Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (47) GO Terms (2) Nucleotides (89) Proteins (54) Interactants (131) Wiki
XB-GENEPAGE-495438

Papers associated with cck



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

CKR-1 orchestrates two motor states from a single motoneuron in C. elegans., Chen L, Su P, Wang Y, Liu Y, Chen LM, Gao S., iScience. April 19, 2024; 27 (4): 109390.


A GLP-1/glucagon (GCG)/CCK2 receptors tri-agonist provides new therapy for obesity and diabetes., Zhao S, Yan Z, Du Y, Li Z, Tang C, Jing L, Sun L, Yang Q, Tang X, Yuan Y, Han J, Jiang N., Br J Pharmacol. September 1, 2022; 179 (17): 4360-4377.


Discovery of once-weekly, peptide-based selective GLP-1 and cholecystokinin 2 receptors co-agonizts., Zhou F, Song P, Tang X, Yang Q, Zhou S, Xu R, Fang T, Jia Z, Han J., Peptides. July 1, 2022; 153 170811.


Nutritional control of thyroid morphogenesis through gastrointestinal hormones., Takagishi M, Aleogho BM, Okumura M, Ushida K, Yamada Y, Seino Y, Fujimura S, Nakashima K, Shindo A., Curr Biol. April 11, 2022; 32 (7): 1485-1496.e4.                            


Peptide-based long-acting co-agonists of GLP-1 and cholecystokinin 1 receptors as novel anti-diabesity agents., Yang Q, Zhou F, Tang X, Wang J, Feng H, Jiang W, Jin L, Jiang N, Yuan Y, Han J, Yan Z., Eur J Med Chem. April 5, 2022; 233 114214.


Therapeutic Rationale to Target Highly Expressed Aurora kinase A Conferring Poor Prognosis in Cholangiocarcinoma., Ding X, Huang T, Peng C, Ahn KS, Andersen JB, Lewinska M, Cao Y, Xu G, Chen G, Kong B, Friess H, Shen S, Roberts LR, Wang L, Zou X., J Cancer. February 3, 2020; 11 (8): 2241-2251.              


TPX2 level correlates with cholangiocarcinoma cell proliferation, apoptosis, and EMT., Zou Z, Zheng B, Li J, Lv X, Zhang H, Yu F, Kong L, Li Y, Yu M, Fang L, Liang B., Biomed Pharmacother. November 1, 2018; 107 1286-1293.


MiR-29a-5p inhibits proliferation and invasion and induces apoptosis in endometrial carcinoma via targeting TPX2., Jiang T, Sui D, You D, Yao S, Zhang L, Wang Y, Zhao J, Zhang Y., Cell Cycle. January 1, 2018; 17 (10): 1268-1278.


Purification and characterization of cholecystokinin from the skin of salamander Tylototriton verrucosus., Jiang WB, Hakim M, Luo L, Li BW, Yang SL, Song YZ, Lai R, Lu QM., Dongwuxue Yanjiu. May 18, 2015; 36 (3): 174-7.


Low structural variation in the host-defense peptide repertoire of the dwarf clawed frog Hymenochirus boettgeri (Pipidae)., Matthijs S, Ye L, Stijlemans B, Cornelis P, Bossuyt F, Roelants K., PLoS One. January 17, 2014; 9 (1): e86339.              


Characterization of the molecular structure, expression and bioactivity of the TNFSF13B (BAFF) gene of the South African clawed frog, Xenopus laevis., Yang L, Zhou L, Zong X, Cao X, Ji X, Gu W, Zhang S., Int Immunopharmacol. March 1, 2013; 15 (3): 478-87.


Identification and characterization of novel microRNA candidates from deep sequencing., Wu Q, Wang C, Guo L, Ge Q, Lu Z., Clin Chim Acta. January 16, 2013; 415 239-44.


Origin and functional diversification of an amphibian defense peptide arsenal., Roelants K, Fry BG, Ye L, Stijlemans B, Brys L, Kok P, Clynen E, Schoofs L, Cornelis P, Bossuyt F., PLoS Genet. January 1, 2013; 9 (8): e1003662.            


Identical skin toxins by convergent molecular adaptation in frogs., Roelants K, Fry BG, Norman JA, Clynen E, Schoofs L, Bossuyt F., Curr Biol. January 26, 2010; 20 (2): 125-30.    


Isolation and cDNA cloning of cholecystokinin from the skin of Rana nigrovittata., Liu X, Wang Y, Cheng L, Song Y, Lai R., Peptides. August 1, 2007; 28 (8): 1540-4.


Molecular cloning of a putative Ciona intestinalis cionin receptor, a new member of the CCK/gastrin receptor family., Nilsson IB, Svensson SP, Monstein HJ., Gene. December 24, 2003; 323 79-88.


Molecular cloning of an unusual bicistronic cholecystokinin receptor mRNA expressed in chicken brain: a structural and functional expression study., Nilsson IB, Svensson SP, Monstein HJ., Regul Pept. June 15, 2003; 114 (1): 37-43.


Hepatic uptake of cholecystokinin octapeptide by organic anion-transporting polypeptides OATP4 and OATP8 of rat and human liver., Ismair MG, Stieger B, Cattori V, Hagenbuch B, Fried M, Meier PJ, Kullak-Ublick GA., Gastroenterology. November 1, 2001; 121 (5): 1185-90.


Small molecule peptidomimetics containing a novel phosphotyrosine bioisostere inhibit protein tyrosine phosphatase 1B and augment insulin action., Bleasdale JE, Ogg D, Palazuk BJ, Jacob CS, Swanson ML, Wang XY, Thompson DP, Conradi RA, Mathews WR, Laborde AL, Stuchly CW, Heijbel A, Bergdahl K, Bannow CA, Smith CW, Svensson C, Liljebris C, Schostarez HJ, May PD, Stevens FC, Larsen SD., Biochemistry. May 15, 2001; 40 (19): 5642-54.


The control of gut motility., Olsson C, Holmgren S., Comp Biochem Physiol A Mol Integr Physiol. March 1, 2001; 128 (3): 481-503.


Identification and characterization of two G protein-coupled receptors for neuropeptide FF., Bonini JA, Jones KA, Adham N, Forray C, Artymyshyn R, Durkin MM, Smith KE, Tamm JA, Boteju LW, Lakhlani PP, Raddatz R, Yao WJ, Ogozalek KL, Boyle N, Kouranova EV, Quan Y, Vaysse PJ, Wetzel JM, Branchek TA, Gerald C, Borowsky B., J Biol Chem. December 15, 2000; 275 (50): 39324-31.


Amacrine cells of the anuran retina: morphology, chemical neuroanatomy, and physiology., Vígh J, Bánvölgyi T, Wilhelm M., Microsc Res Tech. September 1, 2000; 50 (5): 373-83.


A site-directed mutagenesis study on the conserved alanine residue in the distal third intracellular loops of cholecystokininB and neurotensin receptors., Wang HL., Br J Pharmacol. May 1, 1997; 121 (2): 310-6.


Basic amino acids at the C-terminus of the third intracellular loop are required for the activation of phospholipase C by cholecystokinin-B receptors., Wang HL., J Neurochem. April 1, 1997; 68 (4): 1728-35.


Expression of two different cholecystokinin receptors in Xenopus oocytes injected with mRNA from rabbit pancreas and rat hippocampus., Shigeri Y, Shinohara S, Murata S, Fujimoto M, Kawasaki K., Jpn J Pharmacol. September 1, 1996; 72 (1): 9-15.


Identification of cholecystokinin-B/gastrin receptor domains that confer high gastrin affinity: utilization of a novel Xenopus laevis cholecystokinin receptor., Schmitz F, Pratt DS, Wu MJ, Kolakowski LF, Beinborn M, Kopin AS., Mol Pharmacol. August 1, 1996; 50 (2): 436-41.


Towards understanding the role of the first extracellular loop for the binding of peptide hormones to G-protein coupled receptors., Trumpp-Kallmeyer S, Chini B, Mouillac B, Barberis C, Hoflack J, Hibert M., Pharm Acta Helv. September 1, 1995; 70 (3): 255-62.


Structure of two cDNAs encoding cholecystokinin precursors from the brain of Xenopus laevis., Wechselberger C, Kreil G., J Mol Endocrinol. June 1, 1995; 14 (3): 357-64.


Characterization of cloned human cholecystokinin-B receptor as a gastrin receptor., Miyake A, Mochizuki S, Kawashima H., Biochem Pharmacol. April 20, 1994; 47 (8): 1339-43.


Immunohistochemical analysis of the relation between 5-hydroxytryptamine- and neuropeptide-immunoreactive elements in the spinal cord of an amphibian (Xenopus laevis)., Pieribone VA, Brodin L, Hökfelt T., J Comp Neurol. March 22, 1994; 341 (4): 492-506.


Receptors for gut regulatory peptides., Laburthe M, Couvineau A, Amiranoff B, Voisin T., Baillieres Clin Endocrinol Metab. January 1, 1994; 8 (1): 77-110.


Purification, molecular cloning, and functional expression of the cholecystokinin receptor from rat pancreas., Wank SA, Harkins R, Jensen RT, Shapira H, de Weerth A, Slattery T., Proc Natl Acad Sci U S A. April 1, 1992; 89 (7): 3125-9.


[Action of neurotensin on duodenal alkaline secretion in rats. Comparison with pancreatic and gastric secretion]., Merlin D, Tazi-Saad K, Nagain C, Chariot J, Rozé C., Gastroenterol Clin Biol. January 1, 1991; 15 (8-9): 574-9.


Polypeptides related to mammalian procholecystokinin in the brain of an invertebrate, a marine worm, Nereis diversicolor: evidence from in ovo translation of mRNA., Guissi-Kadri S, Bulet P, Curgy JJ., Gen Comp Endocrinol. March 1, 1990; 77 (3): 339-47.


Dissimilar trophic effects of cerulein and xenopsin on the rat pancreas., Feurle GE, Ohnheiser G, Löser C., Int J Pancreatol. March 1, 1990; 6 (2): 129-37.


Expression of Ca2+ mobilizing receptors in Xenopus oocytes: a tool for receptor characterization., Logsdon CD, Williams JA, Stuenkel E, Rosewicz S., Digestion. January 1, 1990; 46 Suppl 2 105-11.


Coupling of exogenous receptors to phospholipase C in Xenopus oocytes through pertussis toxin-sensitive and -insensitive pathways. Cross-talk through heterotrimeric G-proteins., Moriarty TM, Sealfon SC, Carty DJ, Roberts JL, Iyengar R, Landau EM., J Biol Chem. August 15, 1989; 264 (23): 13524-30.


Recognition, purification, and structural elucidation of mammalian physalaemin-related molecules., Lazarus LH, Wilson WE., Methods Enzymol. January 1, 1989; 168 444-62.


Temporal pattern of appearance and distribution of cholecystokinin-like peptides during development in Xenopus laevis., Scalise FW, Vigna SR., Gen Comp Endocrinol. November 1, 1988; 72 (2): 303-11.    


Activation of ionic currents in Xenopus oocytes by corticotropin-releasing peptides., Moriarty TM, Gillo B, Sealfon S, Landau EM., Dev Biol. November 1, 1988; 464 (3): 201-5.


Functional expression of brain cholecystokinin and bombesin receptors in Xenopus oocytes., Moriarty TM, Gillo B, Sealfon S, Roberts JL, Blitzer RD, Landau EM., Dev Biol. August 1, 1988; 464 (1): 75-9.


Expression of receptors for cholecystokinin and other Ca2+-mobilizing hormones in Xenopus oocytes., Williams JA, McChesney DJ, Calayag MC, Lingappa VR, Logsdon CD., Proc Natl Acad Sci U S A. July 1, 1988; 85 (13): 4939-43.


Evidence for a common evolutionary origin of brain and pancreas cholecystokinin receptors., Vigna SR, Thorndyke MC, Williams JA., Proc Natl Acad Sci U S A. June 1, 1986; 83 (12): 4355-9.


Complete nucleotide sequence of mRNA for caerulein precursor from Xenopus skin: the mRNA contains an unusual repetitive structure., Wakabayashi T, Kato H, Tachibana S., Nucleic Acids Res. March 25, 1985; 13 (6): 1817-28.


Is caerulein amphibian CCK?, Dimaline R., Peptides. January 1, 1983; 4 (4): 457-62.


Gastrin-like peptides in the amphibian brain: an immunohistochemical study., Doerr-Schott J, Garaud JC., Peptides. January 1, 1981; 2 Suppl 2 99-107.


Immunohistochemical localization of a gastrin-like peptide in the brain of an amphibian, Xenopus laevis Daud., Doerr-Schott J, Garaud JC, Clauss RO., Cell Tissue Res. November 1, 1979; 203 (1): 65-78.

???pagination.result.page??? 1