Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (22) GO Terms (11) Nucleotides (167) Proteins (44) Interactants (203) Wiki
XB-GENEPAGE-5751246

Papers associated with tgfbi



???displayGene.coCitedPapers???
2 ???displayGene.morpholinoPapers???

???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Time-resolved quantitative proteomic analysis of the developing Xenopus otic vesicle reveals putative congenital hearing loss candidates., Baxi AB, Nemes P, Moody SA., iScience. September 15, 2023; 26 (9): 107665.                          


The molecular dynamics of subdistal appendages in multi-ciliated cells., Ryu H, Lee H, Lee H, Lee J, Noh H, Shin M, Kumar V, Hong S, Kim J, Park S., Nat Commun. January 27, 2021; 12 (1): 612.                


Lack of GAS2L2 Causes PCD by Impairing Cilia Orientation and Mucociliary Clearance., Bustamante-Marin XM, Yin WN, Sears PR, Werner ME, Brotslaw EJ, Mitchell BJ, Jania CM, Zeman KL, Rogers TD, Herring LE, Refabért L, Thomas L, Amselem S, Escudier E, Legendre M, Grubb BR, Knowles MR, Zariwala MA, Ostrowski LE., Am J Hum Genet. February 7, 2019; 104 (2): 229-245.                                  


CLAMP/Spef1 regulates planar cell polarity signaling and asymmetric microtubule accumulation in the Xenopus ciliated epithelia., Kim SK, Zhang S, Werner ME, Brotslaw EJ, Mitchell JW, Altabbaa MM, Mitchell BJ., J Cell Biol. May 7, 2018; 217 (5): 1633-1641.                    


Ccdc11 is a novel centriolar satellite protein essential for ciliogenesis and establishment of left-right asymmetry., Silva E, Betleja E, John E, Spear P, Moresco JJ, Zhang S, Yates JR, Mitchell BJ, Mahjoub MR., Mol Biol Cell. January 1, 2016; 27 (1): 48-63.            


PTEN regulates cilia through Dishevelled., Shnitsar I, Bashkurov M, Masson GR, Ogunjimi AA, Mosessian S, Cabeza EA, Hirsch CL, Trcka D, Gish G, Jiao J, Wu H, Winklbauer R, Williams RL, Pelletier L, Wrana JL, Barrios-Rodiles M., Nat Commun. September 24, 2015; 6 8388.          


Xenopus laevis nucleotide binding protein 1 (xNubp1) is important for convergent extension movements and controls ciliogenesis via regulation of the actin cytoskeleton., Ioannou A, Santama N, Skourides PA., Dev Biol. August 15, 2013; 380 (2): 243-58.                                  


The Xenopus Tgfbi is required for embryogenesis through regulation of canonical Wnt signalling., Wang F, Hu W, Xian J, Ohnuma S, Brenton JD., Dev Biol. July 1, 2013; 379 (1): 16-27.                            


The Lin28 cold-shock domain remodels pre-let-7 microRNA., Mayr F, Schütz A, Döge N, Heinemann U., Nucleic Acids Res. August 1, 2012; 40 (15): 7492-506.            


Xenopus laevis as a novel model to study long bone critical-size defect repair by growth factor-mediated regeneration., Feng L, Milner DJ, Xia C, Nye HL, Redwood P, Cameron JA, Stocum DL, Fang N, Jasiuk I., Tissue Eng Part A. March 1, 2011; 17 (5-6): 691-701.


Cytoplasmic cAMP-sensing domain of hyperpolarization-activated cation (HCN) channels uses two structurally distinct mechanisms to regulate voltage gating., Wicks NL, Wong T, Sun J, Madden Z, Young EC., Proc Natl Acad Sci U S A. January 11, 2011; 108 (2): 609-14.


The Xenopus MEF2 gene family: evidence of a role for XMEF2C in larval tendon development., della Gaspera B, Armand AS, Sequeira I, Lecolle S, Gallien CL, Charbonnier F, Chanoine C., Dev Biol. April 15, 2009; 328 (2): 392-402.                                                    


Xp54 and related (DDX6-like) RNA helicases: roles in messenger RNP assembly, translation regulation and RNA degradation., Weston A, Sommerville J., Nucleic Acids Res. June 12, 2006; 34 (10): 3082-94.          


The caveolin proteins., Williams TM, Lisanti MP., Genome Biol. January 1, 2004; 5 (3): 214.    


Conservation of the heterochronic regulator Lin-28, its developmental expression and microRNA complementary sites., Moss EG, Tang L., Dev Biol. June 15, 2003; 258 (2): 432-42.        


RNA-binding strategies common to cold-shock domain- and RNA recognition motif-containing proteins., Manival X, Ghisolfi-Nieto L, Joseph G, Bouvet P, Erard M., Nucleic Acids Res. June 1, 2001; 29 (11): 2223-33.


RNA binding specificity of Unr, a protein with five cold shock domains., Triqueneaux G, Velten M, Franzon P, Dautry F, Jacquemin-Sablon H., Nucleic Acids Res. April 15, 1999; 27 (8): 1926-34.


Activities of cold-shock domain proteins in translation control., Sommerville J., Bioessays. April 1, 1999; 21 (4): 319-25.


Binding of Y-box proteins to RNA: involvement of different protein domains., Ladomery M, Sommerville J., Nucleic Acids Res. December 25, 1994; 22 (25): 5582-9.


Nucleic acid-binding properties of the Xenopus oocyte Y box protein mRNP3+4., Murray MT., Biochemistry. November 22, 1994; 33 (46): 13910-7.


Structure in solution of the major cold-shock protein from Bacillus subtilis., Schnuchel A, Wiltscheck R, Czisch M, Herrler M, Willimsky G, Graumann P, Marahiel MA, Holak TA., Nature. July 8, 1993; 364 (6433): 169-71.


CSD2, CSD3, and CSD4, genes required for chitin synthesis in Saccharomyces cerevisiae: the CSD2 gene product is related to chitin synthases and to developmentally regulated proteins in Rhizobium species and Xenopus laevis., Bulawa CE., Mol Cell Biol. April 1, 1992; 12 (4): 1764-76.

???pagination.result.page??? 1