Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (114) GO Terms (3) Nucleotides (247) Proteins (43) Interactants (652) Wiki
XB-GENEPAGE-5755356

Papers associated with slc2a1



???displayGene.coCitedPapers???
2 ???displayGene.morpholinoPapers???

???pagination.result.count???

???pagination.result.page??? 1 2 3 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

referenced by:


Different mammalian facilitative glucose transporters expressed in Xenopus oocytes., Keller K, Mueckler M., Biomed Biochim Acta. January 1, 1990; 49 (12): 1201-3.


A possible role for a mammalian facilitative hexose transporter in the development of resistance to drugs., Vera JC, Castillo GR, Rosen OM., Mol Cell Biol. July 1, 1991; 11 (7): 3407-18.


Evidence from oocyte expression that the erythrocyte water channel is distinct from band 3 and the glucose transporter., Zhang R, Alper SL, Thorens B, Verkman AS., J Clin Invest. November 1, 1991; 88 (5): 1553-8.


Promoter-cDNA-directed heterologous protein expression in Xenopus laevis oocytes., Swick AG, Janicot M, Cheneval-Kastelic T, McLenithan JC, Lane MD., Proc Natl Acad Sci U S A. March 1, 1992; 89 (5): 1812-6.


Amino acid substitutions at tryptophan 388 and tryptophan 412 of the HepG2 (Glut1) glucose transporter inhibit transport activity and targeting to the plasma membrane in Xenopus oocytes., Garcia JC, Strube M, Leingang K, Keller K, Mueckler MM., J Biol Chem. April 15, 1992; 267 (11): 7770-6.


The differential role of Cys-421 and Cys-429 of the Glut1 glucose transporter in transport inhibition by p-chloromercuribenzenesulfonic acid (pCMBS) or cytochalasin B (CB)., Wellner M, Monden I, Keller K., FEBS Lett. September 14, 1992; 309 (3): 293-6.


Mammalian facilitative glucose transporters: evidence for similar substrate recognition sites in functionally monomeric proteins., Burant CF, Bell GI., Biochemistry. October 27, 1992; 31 (42): 10414-20.


Kinetic analysis of the liver-type (GLUT2) and brain-type (GLUT3) glucose transporters in Xenopus oocytes: substrate specificities and effects of transport inhibitors., Colville CA, Seatter MJ, Jess TJ, Gould GW, Thomas HM., Biochem J. March 15, 1993; 290 ( Pt 3) 701-6.


Kinetics of GLUT1 and GLUT4 glucose transporters expressed in Xenopus oocytes., Nishimura H, Pallardo FV, Seidner GA, Vannucci S, Simpson IA, Birnbaum MJ., J Biol Chem. April 25, 1993; 268 (12): 8514-20.


GTP analogs suppress uptake but not transport of D-glucose analogs in Glut1 glucose transporter-expressing Xenopus oocytes., Wellner M, Mueckler MM, Keller K., FEBS Lett. July 19, 1993; 327 (1): 95-8.


Role of facilitative glucose transporters in diffusional water permeability through J774 cells., Loike JD, Cao L, Kuang K, Vera JC, Silverstein SC, Fischbarg J., J Gen Physiol. November 1, 1993; 102 (5): 897-906.


Coupling of glucose transport and phosphorylation in Xenopus oocytes and cultured cells: determination of the rate-limiting step., Whitesell RR, Aboumrad MK, Powers AC, Regen DM, Le C, Beechem JM, May JM, Abumrad NA., J Cell Physiol. December 1, 1993; 157 (3): 509-18.


Evidence that facilitative glucose transporters may fold as beta-barrels., Fischbarg J, Cheung M, Czegledy F, Li J, Iserovich P, Kuang K, Hubbard J, Garner M, Rosen OM, Golde DW., Proc Natl Acad Sci U S A. December 15, 1993; 90 (24): 11658-62.


Domains that confer intracellular sequestration of the Glut4 glucose transporter in Xenopus oocytes., Marshall BA, Murata H, Hresko RC, Mueckler M., J Biol Chem. December 15, 1993; 268 (35): 26193-9.


The role of cysteine residues in glucose-transporter-GLUT1-mediated transport and transport inhibition., Wellner M, Monden I, Keller K., Biochem J. May 1, 1994; 299 ( Pt 3) 813-7.


Production of functional GLUT1 by co-expression of N- and C-terminal half molecules in Xenopus oocytes., Preston RA, Sami AJ, Charalambous BM, Baldwin SA., Biochem Soc Trans. August 1, 1994; 22 (3): 276S.


Glutamine 161 of Glut1 glucose transporter is critical for transport activity and exofacial ligand binding., Mueckler M, Weng W, Kruse M., J Biol Chem. August 12, 1994; 269 (32): 20533-8.


Characterization of glucose transport and cloning of a hexose transporter gene in Trypanosoma cruzi., Tetaud E, Bringaud F, Chabas S, Barrett MP, Baltz T., Proc Natl Acad Sci U S A. August 16, 1994; 91 (17): 8278-82.


Discrete structural domains determine differential endoplasmic reticulum to Golgi transit times for glucose transporter isoforms., Hresko RC, Murata H, Marshall BA, Mueckler M., J Biol Chem. December 23, 1994; 269 (51): 32110-9.


Functional consequences of proline mutations in the putative transmembrane segments 6 and 10 of the glucose transporter GLUT1., Wellner M, Monden I, Mueckler MM, Keller K., Eur J Biochem. January 15, 1995; 227 (1-2): 454-8.


A "cysteineless" GLUT1 glucose transporter has normal function when expressed in Xenopus oocytes., Due AD, Cook JA, Fletcher SJ, Qu ZC, Powers AC, May JM., Biochem Biophys Res Commun. March 17, 1995; 208 (2): 590-6.


Role of the C-terminal tail of the GLUT1 glucose transporter in its expression and function in Xenopus laevis oocytes., Due AD, Qu ZC, Thomas JM, Buchs A, Powers AC, May JM., Biochemistry. April 25, 1995; 34 (16): 5462-71.


From triple cysteine mutants to the cysteine-less glucose transporter GLUT1: a functional analysis., Wellner M, Monden I, Keller K., FEBS Lett. August 14, 1995; 370 (1-2): 19-22.


Insulin and insulin-like growth factor I (IGF-I) stimulate GLUT4 glucose transporter translocation in Xenopus oocytes., Mora S, Kaliman P, Chillarón J, Testar X, Palacín M, Zorzano A., Biochem J. October 1, 1995; 311 ( Pt 1) 59-65.


C-terminal mutations that alter the turnover number for 3-O-methylglucose transport by GLUT1 and GLUT4., Dauterive R, Laroux S, Bunn RC, Chaisson A, Sanson T, Reed BC., J Biol Chem. May 10, 1996; 271 (19): 11414-21.


Heterologous expression of rab4 reduces glucose transport and GLUT4 abundance at the cell surface in oocytes., Mora S, Monden I, Zorzano A, Keller K., Biochem J. June 1, 1997; 324 ( Pt 2) 455-9.


Glucose transporter isoforms GLUT1 and GLUT3 transport dehydroascorbic acid., Rumsey SC, Kwon O, Xu GW, Burant CF, Simpson I, Levine M., J Biol Chem. July 25, 1997; 272 (30): 18982-9.


Identification of an amino acid residue that lies between the exofacial vestibule and exofacial substrate-binding site of the Glut1 sugar permeation pathway., Mueckler M, Makepeace C., J Biol Chem. November 28, 1997; 272 (48): 30141-6.


Cysteine-scanning mutagenesis of flanking regions at the boundary between external loop I or IV and transmembrane segment II or VII in the GLUT1 glucose transporter., Olsowski A, Monden I, Keller K., Biochemistry. July 28, 1998; 37 (30): 10738-45.


Transmembrane segment 5 of the Glut1 glucose transporter is an amphipathic helix that forms part of the sugar permeation pathway., Mueckler M, Makepeace C., J Biol Chem. April 16, 1999; 274 (16): 10923-6.


Specificity of ascorbate analogs for ascorbate transport. Synthesis and detection of [(125)I]6-deoxy-6-iodo-L-ascorbic acid and characterization of its ascorbate-specific transport properties., Rumsey SC, Welch RW, Garraffo HM, Ge P, Lu SF, Crossman AT, Kirk KL, Levine M., J Biol Chem. August 13, 1999; 274 (33): 23215-22.


A conserved amino acid motif (R-X-G-R-R) in the Glut1 glucose transporter is an important determinant of membrane topology., Sato M, Mueckler M., J Biol Chem. August 27, 1999; 274 (35): 24721-5.


Selective expression of the large neutral amino acid transporter at the blood-brain barrier., Boado RJ, Li JY, Nagaya M, Zhang C, Pardridge WM., Proc Natl Acad Sci U S A. October 12, 1999; 96 (21): 12079-84.


Cysteine-scanning mutagenesis of transmembrane segment 7 of the GLUT1 glucose transporter., Hruz PW, Mueckler MM., J Biol Chem. December 17, 1999; 274 (51): 36176-80.


GLUTX1, a novel mammalian glucose transporter expressed in the central nervous system and insulin-sensitive tissues., Ibberson M, Uldry M, Thorens B., J Biol Chem. February 18, 2000; 275 (7): 4607-12.


Constitutively active mitogen-activated protein kinase kinase increases GLUT1 expression and recruits both GLUT1 and GLUT4 at the cell surface in 3T3-L1 adipocytes., Yamamoto Y, Yoshimasa Y, Koh M, Suga J, Masuzaki H, Ogawa Y, Hosoda K, Nishimura H, Watanabe Y, Inoue G, Nakao K., Diabetes. March 1, 2000; 49 (3): 332-9.


Cysteine scanning mutagenesis of helices 2 and 7 in GLUT1 identifies an exofacial cleft in both transmembrane segments., Olsowski A, Monden I, Krause G, Keller K., Biochemistry. March 14, 2000; 39 (10): 2469-74.


The mechanism of insulin resistance caused by HIV protease inhibitor therapy., Murata H, Hruz PW, Mueckler M., J Biol Chem. July 7, 2000; 275 (27): 20251-4.


Cysteine-scanning mutagenesis of transmembrane segment 11 of the GLUT1 facilitative glucose transporter., Hruz PW, Mueckler MM., Biochemistry. August 8, 2000; 39 (31): 9367-72.


Dehydroascorbic acid transport by GLUT4 in Xenopus oocytes and isolated rat adipocytes., Rumsey SC, Daruwala R, Al-Hasani H, Zarnowski MJ, Simpson IA, Levine M., J Biol Chem. September 8, 2000; 275 (36): 28246-53.


Sequence and functional analysis of GLUT10: a glucose transporter in the Type 2 diabetes-linked region of chromosome 20q12-13.1., Dawson PA, Mychaleckyj JC, Fossey SC, Mihic SJ, Craddock AL, Bowden DW., Mol Genet Metab. January 1, 2001; 74 (1-2): 186-99.


Functional consequences of the autosomal dominant G272A mutation in the human GLUT1 gene., Klepper J, Monden I, Guertsen E, Voit T, Willemsen M, Keller K., FEBS Lett. June 1, 2001; 498 (1): 104-9.


The predicted ATP-binding domains in the hexose transporter GLUT1 critically affect transporter activity., Liu Q, Vera JC, Peng H, Golde DW., Biochemistry. July 3, 2001; 40 (26): 7874-81.


Rainbow trout glucose transporter (OnmyGLUT1): functional assessment in Xenopus laevis oocytes and expression in fish embryos., Teerijoki H, Krasnov A, Gorodilov Y, Krishna S, Mölsä H., J Exp Biol. August 1, 2001; 204 (Pt 15): 2667-73.


The large cytoplasmic loop of the glucose transporter GLUT1 is an essential structural element for function., Monden I, Olsowski A, Krause G, Keller K., Biol Chem. November 1, 2001; 382 (11): 1551-8.


Analysis of transmembrane segment 10 of the Glut1 glucose transporter by cysteine-scanning mutagenesis and substituted cysteine accessibility., Mueckler M, Makepeace C., J Biol Chem. February 1, 2002; 277 (5): 3498-503.


Indinavir inhibits the glucose transporter isoform Glut4 at physiologic concentrations., Murata H, Hruz PW, Mueckler M., AIDS. April 12, 2002; 16 (6): 859-63.


GLUT2 is a high affinity glucosamine transporter., Uldry M, Ibberson M, Hosokawa M, Thorens B., FEBS Lett. July 31, 2002; 524 (1-3): 199-203.


Mutational analysis of the hexose transporter of Plasmodium falciparum and development of a three-dimensional model., Manning SK, Woodrow C, Zuniga FA, Iserovich P, Fischbarg J, Louw AI, Krishna S., J Biol Chem. August 23, 2002; 277 (34): 30942-9.


Changes in glucose transport and water permeability resulting from the T310I pathogenic mutation in Glut1 are consistent with two transport channels per monomer., Iserovich P, Wang D, Ma L, Yang H, Zuniga FA, Pascual JM, Kuang K, De Vivo DC, Fischbarg J., J Biol Chem. August 23, 2002; 277 (34): 30991-7.  

???pagination.result.page??? 1 2 3 ???pagination.result.next???