Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Gene Literature (110) GO Terms (11) Nucleotides (236) Proteins (36) Interactants (693) Wiki

Papers associated with slc2a1

Search for slc2a1 morpholinos using Textpresso

Limit to papers also referencing gene:
2 paper(s) referencing morpholinos

Results 1 - 50 of 110 results

Page(s): 1 2 3 Next

Sort Newest To Oldest Sort Oldest To Newest

Functional and structural analysis of rare SLC2A2 variants associated with Fanconi-Bickel syndrome and metabolic traits., Enogieru OJ, Ung PMU, Yee SW, Schlessinger A, Giacomini KM., Hum Mutat. January 1, 2019; 40 (7): 983-995.

Development of a rapid functional assay that predicts GLUT1 disease severity., Zaman SM, Mullen SA, Petrovski S, Maljevic S, Gazina EV, Phillips AM, Jones GD, Hildebrand MS, Damiano J, Auvin S, Lerche H, Weber YG, Berkovic SF, Scheffer IE, Reid CA, Petrou S., Neurol Genet. December 1, 2018; 4 (6): e297.        

Gain-of-function HCN2 variants in genetic epilepsy., Li M, Maljevic S, Phillips AM, Petrovski S, Hildebrand MS, Burgess R, Mount T, Zara F, Striano P, Schubert J, Thiele H, Nürnberg P, Wong M, Weisenberg JL, Thio LL, Lerche H, Scheffer IE, Berkovic SF, Petrou S, Reid CA., Hum Mutat. January 1, 2018; 39 (2): 202-209.

Human Mutations in SLC2A9 (Glut9) Affect Transport Capacity for Urate., Ruiz A, Gautschi I, Schild L, Bonny O., Front Physiol. January 1, 2018; 9 476.                      

The SLC2A14 gene, encoding the novel glucose/dehydroascorbate transporter GLUT14, is associated with inflammatory bowel disease., Amir Shaghaghi M, Zhouyao H, Tu H, El-Gabalawy H, Crow GH, Levine M, Bernstein CN, Eck P., Am J Clin Nutr. December 1, 2017; 106 (6): 1508-1513.

Tunable GLUT-Hexose Binding and Transport via Modulation of Hexose C-3 Hydrogen-Bonding Capabilities., Kumar Kondapi VP, Soueidan OM, Cheeseman CI, West FG., Chemistry. June 12, 2017; 23 (33): 8073-8081.

Spemann organizer transcriptome induction by early beta-catenin, Wnt, Nodal, and Siamois signals in Xenopus laevis., Ding Y, Ploper D, Sosa EA, Colozza G, Moriyama Y, Benitez MD, Zhang K, Merkurjev D, De Robertis EM., Proc Natl Acad Sci U S A. January 1, 2017; 114 (15): E3081-E3090.                        

Hypoxia-induced carbonic anhydrase IX facilitates lactate flux in human breast cancer cells by non-catalytic function., Jamali S, Klier M, Ames S, Barros LF, McKenna R, Deitmer JW, Becker HM., Sci Rep. September 21, 2015; 5 13605.              

New fluorinated fructose analogs as selective probes of the hexose transporter protein GLUT5., Soueidan OM, Trayner BJ, Grant TN, Henderson JR, Wuest F, West FG, Cheeseman CI., Org Biomol Chem. June 21, 2015; 13 (23): 6511-21.

Functional characterization of the human facilitative glucose transporter 12 (GLUT12) by electrophysiological methods., Pujol-Giménez J, Pérez A, Reyes AM, Loo DD, Lostao MP., Am J Physiol Cell Physiol. June 15, 2015; 308 (12): C1008-22.

A Protein Kinase C Phosphorylation Motif in GLUT1 Affects Glucose Transport and is Mutated in GLUT1 Deficiency Syndrome., Lee EE, Ma J, Sacharidou A, Mi W, Salato VK, Nguyen N, Jiang Y, Pascual JM, North PE, Shaul PW, Mettlen M, Wang RC., Mol Cell. June 4, 2015; 58 (5): 845-53.

A regression-based differential expression detection algorithm for microarray studies with ultra-low sample size., Vasiliu D, Clamons S, McDonough M, Rabe B, Saha M., PLoS One. January 1, 2015; 10 (3): e0118198.  

FGT-1 is a mammalian GLUT2-like facilitative glucose transporter in Caenorhabditis elegans whose malfunction induces fat accumulation in intestinal cells., Kitaoka S, Morielli AD, Zhao FQ., PLoS One. January 1, 2014; 8 (6): e68475.              

Expression, purification, and structural insights for the human uric acid transporter, GLUT9, using the Xenopus laevis oocytes system., Clémençon B, Lüscher BP, Fine M, Baumann MU, Surbek DV, Bonny O, Hediger MA., PLoS One. January 1, 2014; 9 (10): e108852.                

Left-right patterning in Xenopus conjoined twin embryos requires serotonin signaling and gap junctions., Vandenberg LN, Blackiston DJ, Rea AC, Dore TM, Levin M., Int J Dev Biol. January 1, 2014; 58 (10-12): 799-809.                

On the origin and evolutionary history of NANOG., Scerbo P, Markov GV, Vivien C, Kodjabachian L, Demeneix B, Coen L, Girardot F., PLoS One. January 1, 2014; 9 (1): e85104.    

FGT-1 is the major glucose transporter in C. elegans and is central to aging pathways., Feng Y, Williams BG, Koumanov F, Wolstenholme AJ, Holman GD., Biochem J. December 1, 2013; 456 (2): 219-29.            

The human sodium-dependent ascorbic acid transporters SLC23A1 and SLC23A2 do not mediate ascorbic acid release in the proximal renal epithelial cell., Eck P, Kwon O, Chen S, Mian O, Levine M., Physiol Rep. November 1, 2013; 1 (6): e00136.            

Implications of aberrant temperature-sensitive glucose transport via the glucose transporter deficiency mutant (GLUT1DS) T295M for the alternate-access and fixed-site transport models., Cunningham P, Naftalin RJ., J Membr Biol. June 1, 2013; 246 (6): 495-511.

Intestinal dehydroascorbic acid (DHA) transport mediated by the facilitative sugar transporters, GLUT2 and GLUT8., Corpe CP, Eck P, Wang J, Al-Hasani H, Levine M., J Biol Chem. March 29, 2013; 288 (13): 9092-101.            

Glucose transporter 1 deficiency in the idiopathic generalized epilepsies., Arsov T, Mullen SA, Rogers S, Phillips AM, Lawrence KM, Damiano JA, Goldberg-Stern H, Afawi Z, Kivity S, Trager C, Petrou S, Berkovic SF, Scheffer IE., Ann Neurol. November 1, 2012; 72 (5): 807-15.

Characterization of bovine glucose transporter 1 kinetics and substrate specificities in Xenopus oocytes., Bentley PA, Shao Y, Misra Y, Morielli AD, Zhao FQ., J Dairy Sci. March 1, 2012; 95 (3): 1188-97.

GLUT1 mutations are a rare cause of familial idiopathic generalized epilepsy., Striano P, Weber YG, Toliat MR, Schubert J, Leu C, Chaimana R, Baulac S, Guerrero R, LeGuern E, Lehesjoki AE, Polvi A, Robbiano A, Serratosa JM, Guerrini R, Nürnberg P, Sander T, Zara F, Lerche H, Marini C, null null., Neurology. February 21, 2012; 78 (8): 557-62.

Water transport by glucose transporter type 3 expressed in Xenopus oocytes., Tomioka S., Neuroreport. January 4, 2012; 23 (1): 21-5.

Ligand-induced movements of inner transmembrane helices of Glut1 revealed by chemical cross-linking of di-cysteine mutants., Mueckler M, Makepeace C., PLoS One. January 1, 2012; 7 (2): e31412.            

Arsenic and antimony transporters in eukaryotes., Maciaszczyk-Dziubinska E, Wawrzycka D, Wysocki R., Int J Mol Sci. January 1, 2012; 13 (3): 3527-48.      

Stomatin-deficient cryohydrocytosis results from mutations in SLC2A1: a novel form of GLUT1 deficiency syndrome., Flatt JF, Guizouarn H, Burton NM, Borgese F, Tomlinson RJ, Forsyth RJ, Baldwin SA, Levinson BE, Quittet P, Aguilar-Martinez P, Delaunay J, Stewart GW, Bruce LJ., Blood. November 10, 2011; 118 (19): 5267-77.

Paroxysmal choreoathetosis/spasticity (DYT9) is caused by a GLUT1 defect., Weber YG, Kamm C, Suls A, Kempfle J, Kotschet K, Schüle R, Wuttke TV, Maljevic S, Liebrich J, Gasser T, Ludolph AC, Van Paesschen W, Schöls L, De Jonghe P, Auburger G, Lerche H., Neurology. September 6, 2011; 77 (10): 959-64.

The glucose transporter-2 (GLUT2) is a low affinity dehydroascorbic acid transporter., Mardones L, Ormazabal V, Romo X, Jaña C, Peña E, Vergara M, Zúñiga FA, Zúñiga FA., Biochem Biophys Res Commun. June 24, 2011; 410 (1): 7-12.

Glut1 deficiency: inheritance pattern determined by haploinsufficiency., Rotstein M, Engelstad K, Yang H, Wang D, Levy B, Chung WK, De Vivo DC., Ann Neurol. December 1, 2010; 68 (6): 955-8.

Facilitative glucose transporter Glut1 is actively excluded from rod outer segments., Gospe SM, Baker SA, Arshavsky VY., J Cell Sci. November 1, 2010; 123 (Pt 21): 3639-44.      

Comparison of effects of green tea catechins on apicomplexan hexose transporters and mammalian orthologues., Slavic K, Derbyshire ET, Naftalin RJ, Krishna S, Staines HM., Mol Biochem Parasitol. November 1, 2009; 168 (1): 113-6.  

Model of the exofacial substrate-binding site and helical folding of the human Glut1 glucose transporter based on scanning mutagenesis., Mueckler M, Makepeace C., Biochemistry. June 30, 2009; 48 (25): 5934-42.

Functional studies of the T295M mutation causing Glut1 deficiency: glucose efflux preferentially affected by T295M., Wang D, Yang H, Shi L, Ma L, Fujii T, Engelstad K, Pascual JM, De Vivo DC., Pediatr Res. November 1, 2008; 64 (5): 538-43.

SLC2A9 is a high-capacity urate transporter in humans., Caulfield MJ, Munroe PB, O'Neill D, Witkowska K, Charchar FJ, Doblado M, Evans S, Eyheramendy S, Onipinla A, Howard P, Shaw-Hawkins S, Dobson RJ, Wallace C, Newhouse SJ, Brown M, Connell JM, Dominiczak A, Farrall M, Lathrop GM, Samani NJ, Kumari M, Marmot M, Brunner E, Chambers J, Elliott P, Kooner J, Laan M, Org E, Veldre G, Viigimaa M, Cappuccio FP, Ji C, Iacone R, Strazzullo P, Moley KH, Cheeseman C., PLoS Med. October 7, 2008; 5 (10): e197.          

Identification, expression and characterisation of a Babesia bovis hexose transporter., Derbyshire ET, Franssen FJ, de Vries E, Morin C, Woodrow CJ, Krishna S, Staines HM., Mol Biochem Parasitol. October 1, 2008; 161 (2): 124-9.            

Paroxysmal exercise-induced dyskinesia and epilepsy is due to mutations in SLC2A1, encoding the glucose transporter GLUT1., Suls A, Dedeken P, Goffin K, Van Esch H, Dupont P, Cassiman D, Kempfle J, Wuttke TV, Weber Y, Lerche H, Afawi Z, Vandenberghe W, Korczyn AD, Berkovic SF, Ekstein D, Kivity S, Ryvlin P, Claes LR, Deprez L, Maljevic S, Vargas A, Van Dyck T, Goossens D, Del-Favero J, Van Laere K, De Jonghe P, Van Paesschen W., Brain. July 1, 2008; 131 (Pt 7): 1831-44.              

Structural signatures and membrane helix 4 in GLUT1: inferences from human blood-brain glucose transport mutants., Pascual JM, Wang D, Yang R, Shi L, Yang H, De Vivo DC., J Biol Chem. June 13, 2008; 283 (24): 16732-42.

GLUT1 mutations are a cause of paroxysmal exertion-induced dyskinesias and induce hemolytic anemia by a cation leak., Weber YG, Storch A, Wuttke TV, Brockmann K, Kempfle J, Maljevic S, Margari L, Kamm C, Schneider SA, Huber SM, Pekrun A, Roebling R, Seebohm G, Koka S, Lang C, Kraft E, Blazevic D, Salvo-Vargas A, Fauler M, Mottaghy FM, Münchau A, Edwards MJ, Presicci A, Margari F, Gasser T, Lang F, Bhatia KP, Lehmann-Horn F, Lerche H., J Clin Invest. June 1, 2008; 118 (6): 2157-68.

Transmembrane segment 6 of the Glut1 glucose transporter is an outer helix and contains amino acid side chains essential for transport activity., Mueckler M, Makepeace C., J Biol Chem. April 25, 2008; 283 (17): 11550-5.

Interaction of O-(undec-10-en)-yl-D-glucose derivatives with the Plasmodium falciparum hexose transporter (PfHT)., Ionita M, Krishna S, Léo PM, Morin C, Patel AP., Bioorg Med Chem Lett. September 1, 2007; 17 (17): 4934-7.

Xenopus glucose transporter 1 (xGLUT1) is required for gastrulation movement in Xenopus laevis., Suzawa K, Yukita A, Hayata T, Goto T, Danno H, Michiue T, Cho KW, Asashima M., Int J Dev Biol. January 1, 2007; 51 (3): 183-90.              

Mammalian glucose permease GLUT1 facilitates transport of arsenic trioxide and methylarsonous acid., Liu Z, Sanchez MA, Jiang X, Boles E, Landfear SM, Rosen BP., Biochem Biophys Res Commun. December 15, 2006; 351 (2): 424-30.

Transmembrane segment 12 of the Glut1 glucose transporter is an outer helix and is not directly involved in the transport mechanism., Mueckler M, Makepeace C., J Biol Chem. December 1, 2006; 281 (48): 36993-8.

Probing structure/affinity relationships for the Plasmodium falciparum hexose transporter with glucose derivatives., Fayolle M, Ionita M, Krishna S, Morin C, Patel AP., Bioorg Med Chem Lett. March 1, 2006; 16 (5): 1267-71.

SGK1 kinase upregulates GLUT1 activity and plasma membrane expression., Palmada M, Boehmer C, Akel A, Rajamanickam J, Jeyaraj S, Keller K, Lang F., Diabetes. February 1, 2006; 55 (2): 421-7.

Cysteine-scanning mutagenesis and substituted cysteine accessibility analysis of transmembrane segment 4 of the Glut1 glucose transporter., Mueckler M, Makepeace C., J Biol Chem. November 25, 2005; 280 (47): 39562-8.

Microarray-based identification of VegT targets in Xenopus., Taverner NV, Kofron M, Kofron M, Shin Y, Kabitschke C, Gilchrist MJ, Wylie C, Cho KW, Heasman J, Smith JC., Mech Dev. March 1, 2005; 122 (3): 333-54.                                          

6-Bromo-6-deoxy-L-ascorbic acid: an ascorbate analog specific for Na+-dependent vitamin C transporter but not glucose transporter pathways., Corpe CP, Lee JH, Lee JH, Kwon O, Eck P, Narayanan J, Kirk KL, Levine M., J Biol Chem. February 18, 2005; 280 (7): 5211-20.

A structural basis for the acute effects of HIV protease inhibitors on GLUT4 intrinsic activity., Hertel J, Struthers H, Horj CB, Hruz PW., J Biol Chem. December 31, 2004; 279 (53): 55147-52.

Page(s): 1 2 3 Next