???pagination.result.count???
???pagination.result.page???
1
Dyrk1a is required for craniofacial development in Xenopus laevis. , Johnson HK, Wahl SE , Sesay F, Litovchick L, Dickinson AJ ., Dev Biol. July 15, 2024; 511 63-75.
Differential maturation and chaperone dependence of the paralogous protein kinases DYRK1A and DYRK1B. , Papenfuss M, Lützow S, Wilms G, Babendreyer A, Flaßhoff M, Kunick C, Becker W., Sci Rep. February 14, 2022; 12 (1): 2393.
CEP97 phosphorylation by Dyrk1a is critical for centriole separation during multiciliogenesis. , Lee M, Nagashima K, Yoon J , Sun J, Wang Z, Carpenter C, Lee HK , Hwang YS, Westlake CJ, Daar IO ., J Cell Biol. January 3, 2022; 221 (1):
Deep learning is widely applicable to phenotyping embryonic development and disease. , Naert T , Çiçek Ö, Ogar P, Bürgi M, Shaidani NI , Kaminski MM, Xu Y , Grand K, Vujanovic M, Prata D, Hildebrandt F, Brox T, Ronneberger O, Voigt FF, Helmchen F, Loffing J, Horb ME , Willsey HR , Lienkamp SS ., Development. November 1, 2021; 148 (21):
Correction: The neurodevelopmental disorder risk gene DYRK1A is required for ciliogenesis and control of brain size in Xenopus embryos. , Willsey HR , Xu Y , Everitt A, Dea J, Exner CRT, Willsey AJ, State MW , Harland RM ., Development. December 7, 2020; 147 (23):
The neurodevelopmental disorder risk gene DYRK1A is required for ciliogenesis and control of brain size in Xenopus embryos. , Willsey HR , Xu Y , Xu Y , Everitt A, Dea J, Exner CRT, Willsey AJ, State MW , Harland RM ., Development. June 22, 2020; 147 (21):
Similarity in gene-regulatory networks suggests that cancer cells share characteristics of embryonic neural cells. , Zhang Z , Lei A, Xu L, Chen L, Chen Y , Zhang X, Gao Y, Yang X, Zhang M, Cao Y , Cao Y ., J Biol Chem. August 4, 2017; 292 (31): 12842-12859.
The adaptor protein DCAF7 mediates the interaction of the adenovirus E1A oncoprotein with the protein kinases DYRK1A and HIPK2. , Glenewinkel F, Cohen MJ, King CR, Kaspar S, Bamberg-Lemper S, Mymryk JS, Becker W., Sci Rep. June 16, 2016; 6 28241.
Selective inhibition of the kinase DYRK1A by targeting its folding process. , Kii I, Sumida Y, Goto T , Sonamoto R, Okuno Y, Yoshida S, Kato-Sumida T, Koike Y, Abe M, Nonaka Y, Ikura T, Ito N, Shibuya H , Hosoya T, Hagiwara M., Nat Commun. April 22, 2016; 7 11391.
Down's-syndrome-related kinase Dyrk1A modulates the p120-catenin-Kaiso trajectory of the Wnt signaling pathway. , Hong JY, Park JI , Lee M, Muñoz WA, Miller RK , Ji H, Gu D, Ezan J, Sokol SY , McCrea PD ., J Cell Sci. February 1, 2012; 125 (Pt 3): 561-9.
Development of a novel selective inhibitor of the Down syndrome-related kinase Dyrk1A. , Ogawa Y, Nonaka Y, Goto T , Ohnishi E, Hiramatsu T, Kii I, Yoshida M, Ikura T, Onogi H, Shibuya H , Hosoya T, Ito N, Hagiwara M., Nat Commun. October 5, 2010; 1 86.
Development of a sensitive non-radioactive protein kinase assay and its application for detecting DYRK activity in Xenopus laevis oocytes. , Lilienthal E, Kolanowski K, Becker W., BMC Biochem. May 20, 2010; 11 20.
The dual-specificity kinases, TOPK and DYRK1A, are critical for oocyte maturation induced by wild-type--but not by oncogenic--ras- p21 protein. , Qu Y, Adler V, Izotova L, Pestka S, Bowne W, Michl J, Boutjdir M, Friedman FK, Pincus MR., Front Biosci. September 1, 2007; 12 5089-97.
Two dual specificity kinases are preferentially induced by wild-type rather than by oncogenic RAS- P21 in Xenopus oocytes. , Qu Y, Adler V, Chu T, Platica O, Michl J, Pestka S, Izotova L, Boutjdir M, Pincus MR., Front Biosci. September 1, 2006; 11 2420-7.