Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (26) GO Terms (2) Nucleotides (1992) Proteins (62) Interactants (535) Wiki
XB-GENEPAGE-5820466

Papers associated with krt18.1



???displayGene.coCitedPapers???
1 ???displayGene.morpholinoPapers???

???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Evolutionary origin of Hoxc13-dependent skin appendages in amphibians., Carron M, Sachslehner AP, Cicekdal MB, Bruggeman I, Demuynck S, Golabi B, De Baere E, Declercq W, Tschachler E, Vleminckx K, Eckhart L., Nat Commun. March 18, 2024; 15 (1): 2328.                              


Post-infection treatment with the E protein inhibitor BIT225 reduces disease severity and increases survival of K18-hACE2 transgenic mice infected with a lethal dose of SARS-CoV-2., Ewart G, Bobardt M, Bentzen BH, Yan Y, Thomson A, Klumpp K, Becker S, Rosenkilde MM, Miller M, Gallay P., PLoS Pathog. August 1, 2023; 19 (8): e1011328.                          


A single-cell, time-resolved profiling of Xenopus mucociliary epithelium reveals nonhierarchical model of development., Lee J, Møller AF, Chae S, Bussek A, Park TJ, Kim Y, Lee HS, Pers TH, Kwon T, Sedzinski J, Natarajan KN., Sci Adv. April 7, 2023; 9 (14): eadd5745.                                                          


Identification of estrogen receptor target genes involved in gonadal feminization caused by estrogen in Xenopus laevis., Li Y, Li J, Shen Y, Xiong Y, Li X, Qin Z., Aquat Toxicol. January 21, 2021; 232 105760.      


Structure of the Dnmt1 Reader Module Complexed with a Unique Two-Mono-Ubiquitin Mark on Histone H3 Reveals the Basis for DNA Methylation Maintenance., Ishiyama S, Nishiyama A, Saeki Y, Moritsugu K, Morimoto D, Yamaguchi L, Arai N, Matsumura R, Kawakami T, Mishima Y, Hojo H, Shimamura S, Ishikawa F, Tajima S, Tanaka K, Ariyoshi M, Shirakawa M, Ikeguchi M, Kidera A, Suetake I, Arita K, Nakanishi M., Mol Cell. October 19, 2017; 68 (2): 350-360.e7.            


Clustered Xenopus keratin genes: A genomic, transcriptomic, and proteomic analysis., Suzuki KT, Suzuki M, Suzuki M, Shigeta M, Fortriede JD, Takahashi S, Mawaribuchi S, Yamamoto T, Taira M, Fukui A., Dev Biol. June 15, 2017; 426 (2): 384-392.


Unique gene expression profile of the proliferating Xenopus tadpole tail blastema cells deciphered by RNA-sequencing analysis., Tsujioka H, Kunieda T, Katou Y, Shirahige K, Kubo T., PLoS One. January 1, 2015; 10 (3): e0111655.          


Characterization of a novel type I keratin gene and generation of transgenic lines with fluorescent reporter genes driven by its promoter/enhancer in Xenopus laevis., Suzuki KT, Kashiwagi K, Ujihara M, Marukane T, Tazaki A, Watanabe K, Mizuno N, Ueda Y, Kondoh H, Kashiwagi A, Mochii M., Dev Dyn. December 1, 2010; 239 (12): 3172-81.                  


Neuronatin promotes neural lineage in ESCs via Ca(2+) signaling., Lin HH, Bell E, Uwanogho D, Perfect LW, Noristani H, Bates TJ, Snetkov V, Price J, Sun YM., Stem Cells. November 1, 2010; 28 (11): 1950-60.              


Maternal Interferon Regulatory Factor 6 is required for the differentiation of primary superficial epithelia in Danio and Xenopus embryos., Sabel JL, d'Alençon C, O'Brien EK, Van Otterloo E, Lutz K, Cuykendall TN, Schutte BC, Houston DW, Cornell RA., Dev Biol. January 1, 2009; 325 (1): 249-62.                            


Identification of genes associated with regenerative success of Xenopus laevis hindlimbs., Pearl EJ, Barker D, Day RC, Beck CW., BMC Dev Biol. June 23, 2008; 8 66.              


Genetic screens for mutations affecting development of Xenopus tropicalis., Goda T, Abu-Daya A, Carruthers S, Clark MD, Stemple DL, Zimmerman LB., PLoS Genet. June 1, 2006; 2 (6): e91.                        


Voltage clamp fluorometric measurements on a type II Na+-coupled Pi cotransporter: shedding light on substrate binding order., Virkki LV, Murer H, Forster IC., J Gen Physiol. May 1, 2006; 127 (5): 539-55.                


Macroarray-based analysis of tail regeneration in Xenopus laevis larvae., Tazaki A, Kitayama A, Terasaka C, Watanabe K, Ueno N, Mochii M., Dev Dyn. August 1, 2005; 233 (4): 1394-404.                          


Terrestrial vertebrates have two keratin gene clusters; striking differences in teleost fish., Zimek A, Weber K., Eur J Cell Biol. June 1, 2005; 84 (6): 623-35.


Microarray-based identification of VegT targets in Xenopus., Taverner NV, Kofron M, Kofron M, Shin Y, Kabitschke C, Gilchrist MJ, Wylie C, Cho KW, Heasman J, Smith JC., Mech Dev. March 1, 2005; 122 (3): 333-54.                                          


Structure-function relations of the first and fourth extracellular linkers of the type IIa Na+/Pi cotransporter: II. Substrate interaction and voltage dependency of two functionally important sites., Ehnes C, Forster IC, Bacconi A, Kohler K, Biber J, Murer H., J Gen Physiol. November 1, 2004; 124 (5): 489-503.                


The roles of APC and Axin derived from experimental and theoretical analysis of the Wnt pathway., Lee E, Lee E, Salic A, Krüger R, Heinrich R, Kirschner MW., PLoS Biol. October 1, 2003; 1 (1): E10.                  


Gene expression screening in Xenopus identifies molecular pathways, predicts gene function and provides a global view of embryonic patterning., Gawantka V, Pollet N, Delius H, Vingron M, Pfister R, Nitsch R, Blumenstock C, Niehrs C., Mech Dev. October 1, 1998; 77 (2): 95-141.                                                            


Differential display analysis of gene expression in developing embryos of Xenopus laevis., Adati N, Ito T, Koga C, Kito K, Sakaki Y, Shiokawa K., Biochim Biophys Acta. May 17, 1995; 1262 (1): 43-51.


Function of type I and type II keratin head domains: their role in dimer, tetramer and filament formation., Hatzfeld M, Burba M., J Cell Sci. July 1, 1994; 107 ( Pt 7) 1959-72.


Analysis of Xwnt-4 in embryos of Xenopus laevis: a Wnt family member expressed in the brain and floor plate., McGrew LL, Otte AP, Moon RT., Development. June 1, 1992; 115 (2): 463-73.              


Tailless keratins assemble into regular intermediate filaments in vitro., Hatzfeld M, Weber K., J Cell Sci. October 1, 1990; 97 ( Pt 2) 317-24.


XK endo B is preferentially expressed in several induced embryonic tissues during the development of Xenopus laevis., LaFlamme SE, Dawid IB., Differentiation. March 1, 1990; 43 (1): 1-9.          


Differential keratin gene expression during the differentiation of the cement gland of Xenopus laevis., LaFlamme SE, Dawid IB., Dev Biol. February 1, 1990; 137 (2): 414-8.        


Xenopus endo B is a keratin preferentially expressed in the embryonic notochord., LaFlamme SE, Jamrich M, Richter K, Sargent TD, Dawid IB., Genes Dev. July 1, 1988; 2 (7): 853-62.            

???pagination.result.page??? 1