Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (129) GO Terms (7) Nucleotides (158) Proteins (40) Interactants (599) Wiki
XB-GENEPAGE-5995151

Papers associated with smad10



???displayGene.coCitedPapers???
19 ???displayGene.morpholinoPapers???

???pagination.result.count???

???pagination.result.page??? 1 2 3 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Wip1 regulates Smad4 phosphorylation and inhibits TGF-β signaling., Park DS, Yoon GH, Kim EY, Lee T, Kim K, Lee PC, Chang EJ, Choi SC., EMBO Rep. May 6, 2020; 21 (5): e48693.


Fam46a regulates BMP-dependent pre-placodal ectoderm differentiation in Xenopus., Watanabe T, Yamamoto T, Tsukano K, Hirano S, Horikawa A, Michiue T., Development. October 26, 2018; 145 (20):                                     


Eomesodermin-At Dawn of Cell Fate Decisions During Early Embryogenesis., Probst S, Arnold SJ., Curr Top Dev Biol. January 1, 2017; 122 93-115.


Aberrant regulation of Wnt signaling in hepatocellular carcinoma., Liu LJ, Xie SX, Chen YT, Xue JL, Zhang CJ, Zhu F., World J Gastroenterol. September 7, 2016; 22 (33): 7486-99.      


Mutations in nuclear pore genes NUP93, NUP205 and XPO5 cause steroid-resistant nephrotic syndrome., Braun DA, Sadowski CE, Kohl S, Lovric S, Astrinidis SA, Pabst WL, Gee HY, Ashraf S, Lawson JA, Shril S, Airik M, Tan W, Schapiro D, Rao J, Choi WI, Hermle T, Kemper MJ, Pohl M, Ozaltin F, Konrad M, Bogdanovic R, Büscher R, Helmchen U, Serdaroglu E, Lifton RP, Antonin W, Hildebrandt F., Nat Genet. April 1, 2016; 48 (4): 457-65.        


Identification of p62/SQSTM1 as a component of non-canonical Wnt VANGL2-JNK signalling in breast cancer., Puvirajesinghe TM, Bertucci F, Jain A, Scerbo P, Belotti E, Audebert S, Sebbagh M, Lopez M, Brech A, Finetti P, Charafe-Jauffret E, Chaffanet M, Castellano R, Restouin A, Marchetto S, Collette Y, Gonçalvès A, Macara I, Birnbaum D, Kodjabachian L, Johansen T, Borg JP., Nat Commun. January 12, 2016; 7 10318.                                  


Functional analysis of Hairy genes in Xenopus neural crest initial specification and cell migration., Vega-López GA, Bonano M, Tríbulo C, Fernández JP, Agüero TH, Aybar MJ, Aybar MJ., Dev Dyn. August 1, 2015; 244 (8): 988-1013.                            


A role for BMP-induced homeobox gene MIXL1 in acute myelogenous leukemia and identification of type I BMP receptor as a potential target for therapy., Raymond A, Liu B, Liang H, Wei C, Guindani M, Lu Y, Liang S, St John LS, Molldrem J, Nagarajan L., Oncotarget. December 30, 2014; 5 (24): 12675-93.              


Sox5 Is a DNA-binding cofactor for BMP R-Smads that directs target specificity during patterning of the early ectoderm., Nordin K, LaBonne C., Dev Cell. November 10, 2014; 31 (3): 374-382.                              


The tumor suppressor Smad4/DPC4 is regulated by phosphorylations that integrate FGF, Wnt, and TGF-β signaling., Demagny H, Araki T, De Robertis EM., Cell Rep. October 23, 2014; 9 (2): 688-700.


Gtpbp2 is required for BMP signaling and mesoderm patterning in Xenopus embryos., Kirmizitas A, Gillis WQ, Zhu H, Thomsen GH., Dev Biol. August 15, 2014; 392 (2): 358-67.                                


Spalt-like 4 promotes posterior neural fates via repression of pou5f3 family members in Xenopus., Young JJ, Kjolby RA, Kong NR, Monica SD, Harland RM., Development. April 1, 2014; 141 (8): 1683-93.                                                                


Commitment to nutritional endoderm in Eleutherodactylus coqui involves altered nodal signaling and global transcriptional repression., Chatterjee S, Elinson RP., J Exp Zool B Mol Dev Evol. January 1, 2014; 322 (1): 27-44.


Brain-specific promoter/exon I.f of the cyp19a1 (aromatase) gene in Xenopus laevis., Nakagawa T, Iwabuchi J., J Steroid Biochem Mol Biol. November 1, 2012; 132 (3-5): 247-55.


Signaling crosstalk between TGFβ and Dishevelled/Par1b., Mamidi A, Inui M, Manfrin A, Soligo S, Enzo E, Aragona M, Cordenonsi M, Wessely O, Dupont S, Piccolo S., Cell Death Differ. October 1, 2012; 19 (10): 1689-97.                    


Self-regulation of the head-inducing properties of the Spemann organizer., Inui M, Montagner M, Ben-Zvi D, Martello G, Soligo S, Manfrin A, Aragona M, Enzo E, Zacchigna L, Zanconato F, Azzolin L, Dupont S, Cordenonsi M, Piccolo S., Proc Natl Acad Sci U S A. September 18, 2012; 109 (38): 15354-9.                            


Dynamics of TGF-β signaling reveal adaptive and pulsatile behaviors reflected in the nuclear localization of transcription factor Smad4., Warmflash A, Zhang Q, Sorre B, Vonica A, Siggia ED, Brivanlou AH., Proc Natl Acad Sci U S A. July 10, 2012; 109 (28): E1947-56.          


Bmp indicator mice reveal dynamic regulation of transcriptional response., Javier AL, Doan LT, Luong M, Reyes de Mochel NS, Sun A, Monuki ES, Cho KW., PLoS One. January 1, 2012; 7 (9): e42566.                


USP15 is a deubiquitylating enzyme for receptor-activated SMADs., Inui M, Manfrin A, Mamidi A, Martello G, Morsut L, Soligo S, Enzo E, Moro S, Polo S, Dupont S, Cordenonsi M, Piccolo S., Nat Cell Biol. September 25, 2011; 13 (11): 1368-75.


Role of BMP, FGF, calcium signaling, and Zic proteins in vertebrate neuroectodermal differentiation., Aruga J, Mikoshiba K., Neurochem Res. July 1, 2011; 36 (7): 1286-92.      


SNW1 is a critical regulator of spatial BMP activity, neural plate border formation, and neural crest specification in vertebrate embryos., Wu MY, Ramel MC, Howell M, Hill CS., PLoS Biol. February 15, 2011; 9 (2): e1000593.                              


Conservation and diversification of an ancestral chordate gene regulatory network for dorsoventral patterning., Kozmikova I, Smolikova J, Vlcek C, Kozmik Z., PLoS One. February 3, 2011; 6 (2): e14650.                  


ZFP423 coordinates Notch and bone morphogenetic protein signaling, selectively up-regulating Hes5 gene expression., Masserdotti G, Badaloni A, Green YS, Croci L, Barili V, Bergamini G, Vetter ML, Consalez GG., J Biol Chem. October 1, 2010; 285 (40): 30814-24.              


The BMP pathway acts to directly regulate Tbx20 in the developing heart., Mandel EM, Kaltenbrun E, Callis TE, Zeng XX, Marques SR, Yelon D, Wang DZ, Conlon FL., Development. June 1, 2010; 137 (11): 1919-29.                  


TMEPAI, a transmembrane TGF-beta-inducible protein, sequesters Smad proteins from active participation in TGF-beta signaling., Watanabe Y, Itoh S, Goto T, Ohnishi E, Inamitsu M, Itoh F, Satoh K, Wiercinska E, Yang W, Shi L, Tanaka A, Nakano N, Mommaas AM, Shibuya H, Ten Dijke P, Kato M., Mol Cell. January 15, 2010; 37 (1): 123-34.                                      


Rab5-mediated endocytosis of activin is not required for gene activation or long-range signalling in Xenopus., Hagemann AI, Xu X, Nentwich O, Hyvonen M, Smith JC., Development. August 1, 2009; 136 (16): 2803-13.                


High-sensitivity real-time imaging of dual protein-protein interactions in living subjects using multicolor luciferases., Hida N, Awais M, Takeuchi M, Ueno N, Tashiro M, Takagi C, Singh T, Hayashi M, Ohmiya Y, Ozawa T., PLoS One. June 12, 2009; 4 (6): e5868.            


Modeling and analysis of MH1 domain of Smads and their interaction with promoter DNA sequence motif., Makkar P, Metpally RP, Sangadala S, Reddy BV., J Mol Graph Model. April 1, 2009; 27 (7): 803-12.


FAM/USP9x, a deubiquitinating enzyme essential for TGFbeta signaling, controls Smad4 monoubiquitination., Dupont S, Mamidi A, Cordenonsi M, Montagner M, Zacchigna L, Adorno M, Martello G, Stinchfield MJ, Soligo S, Morsut L, Inui M, Moro S, Modena N, Argenton F, Newfeld SJ, Piccolo S., Cell. January 9, 2009; 136 (1): 123-35.  


TGF-beta induces connexin43 gene expression in normal murine mammary gland epithelial cells via activation of p38 and PI3K/AKT signaling pathways., Tacheau C, Fontaine J, Loy J, Mauviel A, Verrecchia F., J Cell Physiol. December 1, 2008; 217 (3): 759-68.


Generation of mice with a conditional allele for Trim33., Kim J, Kaartinen V., Genesis. June 1, 2008; 46 (6): 329-33.


A crucial role of a high mobility group protein HMGA2 in cardiogenesis., Monzen K, Ito Y, Naito AT, Kasai H, Hiroi Y, Hayashi D, Shiojima I, Yamazaki T, Miyazono K, Asashima M, Nagai R, Komuro I., Nat Cell Biol. May 1, 2008; 10 (5): 567-74.                  


HIF-1alpha signaling upstream of NKX2.5 is required for cardiac development in Xenopus., Nagao K, Taniyama Y, Kietzmann T, Doi T, Komuro I, Morishita R., J Biol Chem. April 25, 2008; 283 (17): 11841-9.                        


Dkk3 is required for TGF-beta signaling during Xenopus mesoderm induction., Pinho S, Niehrs C., Differentiation. December 1, 2007; 75 (10): 957-67.            


Nuclear accumulation of Smad complexes occurs only after the midblastula transition in Xenopus., Saka Y, Hagemann AI, Piepenburg O, Smith JC., Development. December 1, 2007; 134 (23): 4209-18.


XSUMO-1 is required for normal mesoderm induction and axis elongation during early Xenopus development., Yukita A, Michiue T, Danno H, Asashima M., Dev Dyn. October 1, 2007; 236 (10): 2757-66.    


Erbin inhibits transforming growth factor beta signaling through a novel Smad-interacting domain., Dai F, Chang C, Lin X, Dai P, Mei L, Feng XH., Mol Cell Biol. September 1, 2007; 27 (17): 6183-94.


The MH1 domain of Smad3 interacts with Pax6 and represses autoregulation of the Pax6 P1 promoter., Grocott T, Frost V, Maillard M, Johansen T, Wheeler GN, Dawes LJ, Wormstone IM, Chantry A., Nucleic Acids Res. January 1, 2007; 35 (3): 890-901.            


Defining synphenotype groups in Xenopus tropicalis by use of antisense morpholino oligonucleotides., Rana AA, Collart C, Gilchrist MJ, Smith JC., PLoS Genet. November 17, 2006; 2 (11): e193.                                    


Function of the two Xenopus smad4s in early frog development., Chang C, Brivanlou AH, Harland RM., J Biol Chem. October 13, 2006; 281 (41): 30794-803.                


Schnurri transcription factors from Drosophila and vertebrates can mediate Bmp signaling through a phylogenetically conserved mechanism., Yao LC, Blitz IL, Peiffer DA, Phin S, Wang Y, Ogata S, Cho KW, Arora K, Warrior R., Development. October 1, 2006; 133 (20): 4025-34.


Genetic screens for mutations affecting development of Xenopus tropicalis., Goda T, Abu-Daya A, Carruthers S, Clark MD, Stemple DL, Zimmerman LB., PLoS Genet. June 1, 2006; 2 (6): e91.                        


Smads oppose Hox transcriptional activities., Li X, Nie S, Chang C, Qiu T, Cao X., Exp Cell Res. April 1, 2006; 312 (6): 854-64.


Nucleosome regulator Xhmgb3 is required for cell proliferation of the eye and brain as a downstream target of Xenopus rax/Rx1., Terada K, Kitayama A, Kanamoto T, Ueno N, Furukawa T., Dev Biol. March 15, 2006; 291 (2): 398-412.          


GDF3, a BMP inhibitor, regulates cell fate in stem cells and early embryos., Levine AJ, Brivanlou AH., Development. January 1, 2006; 133 (2): 209-16.            


XBP1 forms a regulatory loop with BMP-4 and suppresses mesodermal and neural differentiation in Xenopus embryos., Cao Y, Cao Y, Knöchel S, Oswald F, Donow C, Zhao H, Knöchel W., Mech Dev. January 1, 2006; 123 (1): 84-96.      


Kinetic analysis of Smad nucleocytoplasmic shuttling reveals a mechanism for transforming growth factor beta-dependent nuclear accumulation of Smads., Schmierer B, Hill CS., Mol Cell Biol. November 1, 2005; 25 (22): 9845-58.


The novel Smad-interacting protein Smicl regulates Chordin expression in the Xenopus embryo., Collart C, Verschueren K, Rana A, Smith JC, Huylebroeck D., Development. October 1, 2005; 132 (20): 4575-86.        


Cited1 is a bifunctional transcriptional cofactor that regulates early nephronic patterning., Plisov S, Tsang M, Shi G, Boyle S, Yoshino K, Dunwoodie SL, Dawid IB, Shioda T, Perantoni AO, de Caestecker MP., J Am Soc Nephrol. June 1, 2005; 16 (6): 1632-44.


Notch signaling modulates the nuclear localization of carboxy-terminal-phosphorylated smad2 and controls the competence of ectodermal cells for activin A., Abe T, Furue M, Kondow A, Matsuzaki K, Asashima M., Mech Dev. May 1, 2005; 122 (5): 671-80.            

???pagination.result.page??? 1 2 3 ???pagination.result.next???