Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (24) GO Terms (10) Nucleotides (108) Proteins (43) Interactants (68) Wiki

Papers associated with cacna1h

Limit to papers also referencing gene:

Results 1 - 24 of 24 results

Page(s): 1

Sort Newest To Oldest Sort Oldest To Newest

A revised mechanism of action of hyperaldosteronism-linked mutations in cytosolic domains of GIRK4 (KCNJ5)., Shalomov B, Handklo-Jamal R, Reddy HP, Theodor N, Bera AK, Dascal N., J Physiol. January 1, 2022; 600 (6): 1419-1437.

Calcium Signaling in Vertebrate Development and Its Role in Disease., Paudel S, Sindelar R, Saha M., Int J Mol Sci. October 30, 2018; 19 (11):     

Functional variants in HCN4 and CACNA1H may contribute to genetic generalized epilepsy., Becker F, Reid CA, Hallmann K, Tae HS, Phillips AM, Teodorescu G, Weber YG, Kleefuss-Lie A, Elger C, Perez-Reyes E, Petrou S, Kunz WS, Lerche H, Maljevic S., Epilepsia Open. January 1, 2017; 2 (3): 334-342.        

T-type Calcium Channel Regulation of Neural Tube Closure and EphrinA/EPHA Expression., Abdul-Wajid S, Morales-Diaz H, Khairallah SM, Smith WC., Cell Rep. October 27, 2015; 13 (4): 829-839.      

Differential zinc permeation and blockade of L-type Ca2+ channel isoforms Cav1.2 and Cav1.3., Park SJ, Min SH, Kang HW, Lee JH., Biochim Biophys Acta. October 1, 2015; 1848 (10 Pt A): 2092-100.

Ca-α1T, a fly T-type Ca2+ channel, negatively modulates sleep., Jeong K, Lee S, Seo H, Oh Y, Jang D, Choe J, Kim D, Lee JH, Jones WD., Sci Rep. September 21, 2015; 5 17893.            

The role of voltage-gated calcium channels in neurotransmitter phenotype specification: Coexpression and functional analysis in Xenopus laevis., Lewis BB, Miller LE, Herbst WA, Saha MS., J Comp Neurol. August 1, 2014; 522 (11): 2518-31.                          

Selective modulation of cellular voltage-dependent calcium channels by hyperbaric pressure-a suggested HPNS partial mechanism., Aviner B, Gradwohl G, Mor Aviner M, Levy S, Grossman Y., Front Cell Neurosci. January 1, 2014; 8 136.                    

Cooperative activation of the T-type CaV3.2 channel: interaction between Domains II and III., Demers-Giroux PO, Bourdin B, Sauvé R, Parent L., J Biol Chem. October 11, 2013; 288 (41): 29281-93.

A post-burst after depolarization is mediated by group i metabotropic glutamate receptor-dependent upregulation of Ca(v)2.3 R-type calcium channels in CA1 pyramidal neurons., Park JY, Remy S, Varela J, Cooper DC, Chung S, Kang HW, Lee JH, Spruston N., PLoS Biol. November 16, 2010; 8 (11): e1000534.                    

Structural determinants of the high affinity extracellular zinc binding site on Cav3.2 T-type calcium channels., Kang HW, Vitko I, Lee SS, Perez-Reyes E, Lee JH, Lee JH., J Biol Chem. January 29, 2010; 285 (5): 3271-81.

Tarantula toxin ProTx-I differentiates between human T-type voltage-gated Ca2+ Channels Cav3.1 and Cav3.2., Ohkubo T, Yamazaki J, Kitamura K., J Pharmacol Sci. January 1, 2010; 112 (4): 452-8.

Cloning and characterization of voltage-gated calcium channel alpha1 subunits in Xenopus laevis during development., Lewis BB, Wester MR, Miller LE, Nagarkar MD, Johnson MB, Saha MS., Dev Dyn. November 1, 2009; 238 (11): 2891-902.                                

Five different profiles of dihydropyridines in blocking T-type Ca(2+) channel subtypes (Ca(v)3.1 (alpha(1G)), Ca(v)3.2 (alpha(1H)), and Ca(v)3.3 (alpha(1I))) expressed in Xenopus oocytes., Furukawa T, Nukada T, Namiki Y, Miyashita Y, Hatsuno K, Ueno Y, Yamakawa T, Isshiki T., Eur J Pharmacol. June 24, 2009; 613 (1-3): 100-7.

An extracellular Cu2+ binding site in the voltage sensor of BK and Shaker potassium channels., Ma Z, Wong KY, Horrigan FT., J Gen Physiol. May 1, 2008; 131 (5): 483-502.                      

Regulation of CA(v)3.2 Ca2+ channel activity by protein tyrosine phosphorylation., Huh SU, Kang HW, Park JY, Lee JH, Lee JH., J Microbiol Biotechnol. February 1, 2008; 18 (2): 365-8.

Histidine residues in the IS3-IS4 loop are critical for nickel-sensitive inhibition of the Cav2.3 calcium channel., Kang HW, Moon HJ, Joo SH, Lee JH, Lee JH., FEBS Lett. December 22, 2007; 581 (30): 5774-80.

Activation of protein kinase C augments T-type Ca2+ channel activity without changing channel surface density., Park JY, Kang HW, Moon HJ, Huh SU, Jeong SW, Soldatov NM, Lee JH., J Physiol. December 1, 2006; 577 (Pt 2): 513-23.

Augmentation of Cav3.2 T-type calcium channel activity by cAMP-dependent protein kinase A., Kim JA, Park JY, Kang HW, Huh SU, Jeong SW, Lee JH, Lee JH., J Pharmacol Exp Ther. July 1, 2006; 318 (1): 230-7.

A molecular determinant of nickel inhibition in Cav3.2 T-type calcium channels., Kang HW, Park JY, Jeong SW, Kim JA, Moon HJ, Perez-Reyes E, Lee JH, Lee JH., J Biol Chem. February 24, 2006; 281 (8): 4823-30.

Identification and electrophysiological characteristics of isoforms of T-type calcium channel Ca(v)3.2 expressed in pregnant human uterus., Ohkubo T, Inoue Y, Kawarabayashi T, Kitamura K., Cell Physiol Biochem. January 1, 2005; 16 (4-6): 245-54.

Multiple structural elements contribute to the slow kinetics of the Cav3.3 T-type channel., Park JY, Kang HW, Jeong SW, Lee JH, Lee JH., J Biol Chem. May 21, 2004; 279 (21): 21707-13.

Modulation of Ca(v)3.2 T-type Ca2+ channels by protein kinase C., Park JY, Jeong SW, Perez-Reyes E, Lee JH, Lee JH., FEBS Lett. July 17, 2003; 547 (1-3): 37-42.

Molecular characterization of two members of the T-type calcium channel family., Perez-Reyes E, Lee JH, Cribbs LL., Ann N Y Acad Sci. April 30, 1999; 868 131-43.

Page(s): 1