Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (31) GO Terms (6) Nucleotides (87) Proteins (36) Interactants (114) Wiki
XB-GENEPAGE-6053270

Papers associated with v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog

Search for v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog morpholinos using Textpresso

Limit to papers also referencing gene:
3 paper(s) referencing morpholinos

Results 1 - 31 of 31 results

Page(s): 1

Sort Newest To Oldest Sort Oldest To Newest

Early stages of induction of anterior head ectodermal properties in Xenopus embryos are mediated by transcriptional cofactor ldb1., Plautz CZ, Zirkle BE, Deshotel MJ, Grainger RM., Dev Dyn. December 1, 2014; 243 (12): 1606-18.              


Gain-of-function mutation in TASK-4 channels and severe cardiac conduction disorder., Friedrich C, Rinné S, Zumhagen S, Kiper AK, Silbernagel N, Netter MF, Stallmeyer B, Schulze-Bahr E, Decher N., EMBO Mol Med. July 1, 2014; 6 (7): 937-51.              


Dissection of a Ciona regulatory element reveals complexity of cross-species enhancer activity., Chen WC, Pauls S, Bacha J, Elgar G, Loose M, Shimeld SM., Dev Biol. June 15, 2014; 390 (2): 261-72.          


Sp8 regulates inner ear development., Chung HA, Medina-Ruiz S, Harland RM., Proc Natl Acad Sci U S A. April 29, 2014; 111 (17): 6329-34.                                                    


Cooperative activation of Xenopus rhodopsin transcription by paired-like transcription factors., Reks SE, McIlvain V, Zhuo X, Knox BE., BMC Mol Biol. February 6, 2014; 15 4.                  


Defining progressive stages in the commitment process leading to embryonic lens formation., Jin H, Fisher M, Grainger RM., Genesis. October 1, 2012; 50 (10): 728-40.              


Exon capture and bulk segregant analysis: rapid discovery of causative mutations using high-throughput sequencing., del Viso F, Bhattacharya D, Kong Y, Gilchrist MJ, Khokha MK., BMC Genomics. July 16, 2012; 13 649.                  


Transcription factors involved in lens development from the preplacodal ectoderm., Ogino H, Ochi H, Reza HM, Yasuda K., Dev Biol. March 15, 2012; 363 (2): 333-47.      


Blocking effect of methylflavonolamine on human Na(V)1.5 channels expressed in Xenopus laevis oocytes and on sodium currents in rabbit ventricular myocytes., Fan XR, Ma JH, Zhang PH, Xing JL., Acta Pharmacol Sin. March 1, 2010; 31 (3): 297-306.                  


Neither MafA/L-Maf nor MafB is essential for lens development in mice., Takeuchi T, Kudo T, Ogata K, Hamada M, Nakamura M, Kito K, Abe Y, Ueda N, Yamamoto M, Engel JD, Takahashi S., Genes Cells. August 1, 2009; 14 (8): 941-7.


Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout., Woodward OM, Köttgen A, Coresh J, Boerwinkle E, Guggino WB, Köttgen M., Proc Natl Acad Sci U S A. June 23, 2009; 106 (25): 10338-42.


Isolation and characterization of a novel gene, xMADML, involved in Xenopus laevis eye development., Elkins MB, Henry JJ., Dev Dyn. July 1, 2006; 235 (7): 1845-57.                  


Phylogenomic analysis and expression patterns of large Maf genes in Xenopus tropicalis provide new insights into the functional evolution of the gene family in osteichthyans., Coolen M, Sii-Felice K, Bronchain O, Mazabraud A, Bourrat F, Rétaux S, Felder-Schmittbuhl MP, Mazan S, Plouhinec JL., Dev Genes Evol. July 1, 2005; 215 (7): 327-39.


Requirement for betaB1-crystallin promoter of Xenopus laevis in embryonic lens development and lens regeneration., Mizuno N, Ueda Y, Kondoh H., Dev Growth Differ. April 1, 2005; 47 (3): 131-40.          


The 5''-AT-rich half-site of Maf recognition element: a functional target for bZIP transcription factor Maf., Yoshida T, Ohkumo T, Ishibashi S, Yasuda K., Nucleic Acids Res. January 1, 2005; 33 (11): 3465-78.                  


Conserved transcriptional activators of the Xenopus rhodopsin gene., Whitaker SL, Knox BE., J Biol Chem. November 19, 2004; 279 (47): 49010-8.                


Temporal expression of L-Maf and RaxL in developing chicken retina are arranged into mosaic pattern., Ochi H, Sakagami K, Ishii A, Morita N, Nishiuchi M, Ogino H, Yasuda K., Gene Expr Patterns. September 1, 2004; 4 (5): 489-94.


Roles of Maf family proteins in lens development., Reza HM, Yasuda K., Dev Dyn. March 1, 2004; 229 (3): 440-8.


Mouse MafA, homologue of zebrafish somite Maf 1, contributes to the specific transcriptional activity through the insulin promoter., Kajihara M, Sone H, Amemiya M, Katoh Y, Isogai M, Shimano H, Yamada N, Takahashi S., Biochem Biophys Res Commun. December 19, 2003; 312 (3): 831-42.


The stability of the lens-specific Maf protein is regulated by fibroblast growth factor (FGF)/ERK signaling in lens fiber differentiation., Ochi H, Ogino H, Kageyama Y, Yasuda K., J Biol Chem. January 3, 2003; 278 (1): 537-44.


L-Maf, a downstream target of Pax6, is essential for chick lens development., Reza HM, Ogino H, Yasuda K., Mech Dev. August 1, 2002; 116 (1-2): 61-73.


Independent regulation of initiation and maintenance phases of Hoxa3 expression in the vertebrate hindbrain involve auto- and cross-regulatory mechanisms., Manzanares M, Bel-Vialar S, Ariza-McNaughton L, Ferretti E, Marshall H, Maconochie MM, Blasi F, Krumlauf R., Development. September 1, 2001; 128 (18): 3595-607.


Heme mediates derepression of Maf recognition element through direct binding to transcription repressor Bach1., Ogawa K, Sun J, Taketani S, Nakajima O, Nishitani C, Sassa S, Hayashi N, Yamamoto M, Shibahara S, Fujita H, Igarashi K., EMBO J. June 1, 2001; 20 (11): 2835-43.


Distinct roles of maf genes during Xenopus lens development., Ishibashi S, Yasuda K., Mech Dev. March 1, 2001; 101 (1-2): 155-66.          


Isolation, characterization, and expression analysis of zebrafish large Mafs., Kajihara M, Kawauchi S, Kobayashi M, Ogino H, Takahashi S, Yasuda K., J Biochem. January 1, 2001; 129 (1): 139-46.


Regulation of lens fiber cell differentiation by transcription factor c-Maf., Kawauchi S, Takahashi S, Nakajima O, Ogino H, Morita M, Nishizawa M, Yasuda K, Yamamoto M., J Biol Chem. July 2, 1999; 274 (27): 19254-60.


Conserved and distinct roles of kreisler in regulation of the paralogous Hoxa3 and Hoxb3 genes., Manzanares M, Cordes S, Ariza-McNaughton L, Sadl V, Maruthainar K, Barsh G, Krumlauf R., Development. February 1, 1999; 126 (4): 759-69.


Induction of lens differentiation by activation of a bZIP transcription factor, L-Maf., Ogino H, Yasuda K., Science. April 3, 1998; 280 (5360): 115-8.


Segmental regulation of Hoxb-3 by kreisler., Manzanares M, Cordes S, Kwan CT, Sham MH, Barsh GS, Krumlauf R., Nature. May 8, 1997; 387 (6629): 191-5.


Establishment of a human T-cell hybridoma that produces human macrophage activating factor for superoxide production and translation of messenger RNA of the factor in Xenopus laevis oocyte., Miyamoto D, Nakamura N, Ishii Y, Kobayashi Y, Osawa T., Mol Immunol. March 1, 1987; 24 (3): 239-45.


Translation of human macrophage activating factor (for glucose consumption) mRNA in Xenopus laevis oocytes., Ishii Y, Osada H, Kobayashi Y, Obinata M, Natori S, Osawa T., Immunol Invest. April 1, 1985; 14 (2): 95-103.

Page(s): 1