Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (44) GO Terms (20) Nucleotides (226) Proteins (23) Interactants (660) Wiki
XB-GENEPAGE-6257418

Papers associated with tbx6



???displayGene.coCitedPapers???
9 ???displayGene.morpholinoPapers???

???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Mechanical Tensions Regulate Gene Expression in the Xenopus laevis Axial Tissues., Eroshkin FM, Fefelova EA, Bredov DV, Orlov EE, Kolyupanova NM, Mazur AM, Sokolov AS, Zhigalova NA, Prokhortchouk EB, Nesterenko AM, Zaraisky AG., Int J Mol Sci. January 10, 2024; 25 (2):         


dmrt2 and myf5 Link Early Somitogenesis to Left-Right Axis Determination in Xenopus laevis., Tingler M, Brugger A, Feistel K, Schweickert A., Front Cell Dev Biol. January 1, 2022; 10 858272.                  


Rab7 is required for mesoderm patterning and gastrulation in Xenopus., Kreis J, Wielath FM, Vick P., Biol Open. July 15, 2021; 10 (7):                                           


Evolution of Somite Compartmentalization: A View From Xenopus., Della Gaspera B, Weill L, Chanoine C., Front Cell Dev Biol. January 1, 2021; 9 790847.                  


Xenopus gpx3 Mediates Posterior Development by Regulating Cell Death during Embryogenesis., Lee H, Lee H, Ismail T, Kim Y, Chae S, Ryu HY, Lee DS, Kwon TK, Park TJ, Kwon T, Lee HS, Lee HS., Antioxidants (Basel). December 12, 2020; 9 (12):               


Pinhead signaling regulates mesoderm heterogeneity via FGF receptor-dependent pathway., Ossipova O, Itoh K, Radu A, Ezan J, Sokol SY., Development. January 1, 2020;                                       


Gon4l regulates notochord boundary formation and cell polarity underlying axis extension by repressing adhesion genes., Williams MLK, Sawada A, Budine T, Yin C, Gontarz P, Solnica-Krezel L., Nat Commun. April 3, 2018; 9 (1): 1319.                


Innate Immune Response and Off-Target Mis-splicing Are Common Morpholino-Induced Side Effects in Xenopus., Gentsch GE, Spruce T, Monteiro RS, Owens NDL, Martin SR, Smith JC., Dev Cell. March 12, 2018; 44 (5): 597-610.e10.                                            


Evo-engineering and the cellular and molecular origins of the vertebrate spinal cord., Steventon B, Martinez Arias A., Dev Biol. December 1, 2017; 432 (1): 3-13.


Conservatism and variability of gene expression profiles among homeologous transcription factors in Xenopus laevis., Watanabe M, Yasuoka Y, Mawaribuchi S, Kuretani A, Ito M, Kondo M, Ochi H, Ogino H, Fukui A, Taira M, Kinoshita T., Dev Biol. June 15, 2017; 426 (2): 301-324.                          


RARβ2 is required for vertebrate somitogenesis., Janesick A, Tang W, Nguyen TTL, Blumberg B., Development. June 1, 2017; 144 (11): 1997-2008.                                              


Eomesodermin-At Dawn of Cell Fate Decisions During Early Embryogenesis., Probst S, Arnold SJ., Curr Top Dev Biol. January 1, 2017; 122 93-115.


Dissecting the pre-placodal transcriptome to reveal presumptive direct targets of Six1 and Eya1 in cranial placodes., Riddiford N, Schlosser G., Elife. August 31, 2016; 5                                                                         


CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo., Moreno-Mateos MA, Vejnar CE, Beaudoin JD, Fernandez JP, Mis EK, Khokha MK, Giraldez AJ., Nat Methods. October 1, 2015; 12 (10): 982-8.        


Development of the vertebrate tailbud., Beck CW., Wiley Interdiscip Rev Dev Biol. January 1, 2015; 4 (1): 33-44.        


Direct regulation of siamois by VegT is required for axis formation in Xenopus embryo., Li HY, El Yakoubi W, Shi DL., Int J Dev Biol. January 1, 2015; 59 (10-12): 443-51.                          


Active repression by RARγ signaling is required for vertebrate axial elongation., Janesick A, Nguyen TT, Aisaki K, Igarashi K, Kitajima S, Chandraratna RA, Kanno J, Blumberg B., Development. June 1, 2014; 141 (11): 2260-70.                    


In vivo T-box transcription factor profiling reveals joint regulation of embryonic neuromesodermal bipotency., Gentsch GE, Owens ND, Martin SR, Piccinelli P, Faial T, Trotter MW, Gilchrist MJ, Smith JC., Cell Rep. September 26, 2013; 4 (6): 1185-96.                              


Optimal histone H3 to linker histone H1 chromatin ratio is vital for mesodermal competence in Xenopus., Lim CY, Reversade B, Knowles BB, Solter D., Development. February 1, 2013; 140 (4): 853-60.                                              


Early transcriptional targets of MyoD link myogenesis and somitogenesis., Maguire RJ, Isaacs HV, Pownall ME., Dev Biol. November 15, 2012; 371 (2): 256-68.                                                    


Snail2 controls mesodermal BMP/Wnt induction of neural crest., Shi J, Severson C, Yang J, Wedlich D, Klymkowsky MW., Development. August 1, 2011; 138 (15): 3135-45.                  


Paraxial T-box genes, Tbx6 and Tbx1, are required for cranial chondrogenesis and myogenesis., Tazumi S, Yabe S, Uchiyama H., Dev Biol. October 15, 2010; 346 (2): 170-80.                                


A divergent Tbx6-related gene and Tbx6 are both required for neural crest and intermediate mesoderm development in Xenopus., Callery EM, Thomsen GH, Smith JC., Dev Biol. April 1, 2010; 340 (1): 75-87.                


Zygotic VegT is required for Xenopus paraxial mesoderm formation and is regulated by Nodal signaling and Eomesodermin., Fukuda M, Takahashi S, Haramoto Y, Onuma Y, Kim YJ, Yeo CY, Ishiura S, Asashima M., Int J Dev Biol. January 1, 2010; 54 (1): 81-92.              


The RNA-binding protein Seb4/RBM24 is a direct target of MyoD and is required for myogenesis during Xenopus early development., Li HY, Bourdelas A, Carron C, Shi DL., Mech Dev. January 1, 2010; 127 (5-6): 281-91.        


The Xenopus Bowline/Ripply family proteins negatively regulate the transcriptional activity of T-box transcription factors., Hitachi K, Danno H, Tazumi S, Aihara Y, Uchiyama H, Okabayashi K, Kondow A, Asashima M., Int J Dev Biol. January 1, 2009; 53 (4): 631-9.                    


PMesogenin1 and 2 function directly downstream of Xtbx6 in Xenopus somitogenesis and myogenesis., Tazumi S, Yabe S, Yokoyama J, Aihara Y, Uchiyama H., Dev Dyn. December 1, 2008; 237 (12): 3749-61.        


Physical interaction between Tbx6 and mespb is indispensable for the activation of bowline expression during Xenopus somitogenesis., Hitachi K, Danno H, Kondow A, Ohnuma K, Uchiyama H, Ishiura S, Kurisaki A, Asashima M., Biochem Biophys Res Commun. August 8, 2008; 372 (4): 607-12.        


Tbx6, Thylacine1, and E47 synergistically activate bowline expression in Xenopus somitogenesis., Hitachi K, Kondow A, Danno H, Inui M, Uchiyama H, Asashima M., Dev Biol. January 15, 2008; 313 (2): 816-28.      


Bowline mediates association of the transcriptional corepressor XGrg-4 with Tbx6 during somitogenesis in Xenopus., Kondow A, Hitachi K, Okabayashi K, Hayashi N, Asashima M., Biochem Biophys Res Commun. August 10, 2007; 359 (4): 959-64.        


Defining synphenotype groups in Xenopus tropicalis by use of antisense morpholino oligonucleotides., Rana AA, Collart C, Gilchrist MJ, Smith JC., PLoS Genet. November 17, 2006; 2 (11): e193.                                    


Xenopus Tbx6 mediates posterior patterning via activation of Wnt and FGF signalling., Lou X, Fang P, Li S, Hu RY, Kuerner KM, Steinbeisser H, Ding X., Cell Res. September 1, 2006; 16 (9): 771-9.


FGF8, Wnt8 and Myf5 are target genes of Tbx6 during anteroposterior specification in Xenopus embryo., Li HY, Bourdelas A, Carron C, Gomez C, Boucaut JC, Shi DL., Dev Biol. February 15, 2006; 290 (2): 470-81.                    


Xtbx6r, a novel T-box gene expressed in the paraxial mesoderm, has anterior neural-inducing activity., Yabe S, Tazumi S, Yokoyama J, Uchiyama H., Int J Dev Biol. January 1, 2006; 50 (8): 681-9.                        


Identification of novel genes affecting mesoderm formation and morphogenesis through an enhanced large scale functional screen in Xenopus., Chen JA, Voigt J, Gilchrist M, Papalopulu N, Amaya E., Mech Dev. March 1, 2005; 122 (3): 307-31.                                                                                                                      


Multiple signaling pathways control Tbx6 expression during Xenopus myogenesis., Fang PF, Hu RY, He XY, Ding XY., Acta Biochim Biophys Sin (Shanghai). June 1, 2004; 36 (6): 390-6.


Drosophila Tbx6-related gene, Dorsocross, mediates high levels of Dpp and Scw signal required for the development of amnioserosa and wing disc primordium., Hamaguchi T, Yabe S, Uchiyama H, Murakami R., Dev Biol. January 15, 2004; 265 (2): 355-68.


T-box genes in early embryogenesis., Showell C, Binder O, Conlon FL., Dev Dyn. January 1, 2004; 229 (1): 201-18.


Cloning and characterization of the T-box gene Tbx6 in Xenopus laevis., Uchiyama H, Kobayashi T, Yamashita A, Ohno S, Yabe S., Dev Growth Differ. December 1, 2001; 43 (6): 657-69.            


Evidence for dual mechanisms of mesoderm establishment in Xenopus embryos., Kavka AI, Green JB., Dev Dyn. September 1, 2000; 219 (1): 77-83.


The bHLH class protein pMesogenin1 can specify paraxial mesoderm phenotypes., Yoon JK, Moon RT, Wold B., Dev Biol. June 15, 2000; 222 (2): 376-91.            


Identification, mapping, and phylogenomic analysis of four new human members of the T-box gene family: EOMES, TBX6, TBX18, and TBX19., Yi CH, Terrett JA, Li QY, Ellington K, Packham EA, Armstrong-Buisseret L, McClure P, Slingsby T, Brook JD., Genomics. January 1, 1999; 55 (1): 10-20.


Molecular identification of spadetail: regulation of zebrafish trunk and tail mesoderm formation by T-box genes., Griffin KJ, Amacher SL, Kimmel CB, Kimelman D., Development. September 1, 1998; 125 (17): 3379-88.


Characterization of the zebrafish tbx16 gene and evolution of the vertebrate T-box family., Ruvinsky I, Silver LM, Ho RK., Dev Genes Evol. April 1, 1998; 208 (2): 94-9.

???pagination.result.page??? 1