Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (97) GO Terms (6) Nucleotides (237) Proteins (42) Interactants (917) Wiki

Papers associated with crebbp

Search for crebbp morpholinos using Textpresso

Limit to papers also referencing gene:
4 paper(s) referencing morpholinos

Results 1 - 50 of 96 results

Page(s): 1 2 Next

Sort Newest To Oldest Sort Oldest To Newest

referenced by:

A variant octamer motif in a Xenopus H2B histone gene promoter is not required for transcription in frog oocytes., Hinkley C, Perry M., Mol Cell Biol. February 1, 1991; 11 (2): 641-54.

Antibodies specific for the human retinoblastoma protein identify a family of related polypeptides., Hu QJ, Bautista C, Edwards GM, Defeo-Jones D, Jones RE, Harlow E., Mol Cell Biol. November 1, 1991; 11 (11): 5792-9.

A cap binding protein that may mediate nuclear export of RNA polymerase II-transcribed RNAs., Izaurralde E, Stepinski J, Darzynkiewicz E, Mattaj IW., J Cell Biol. September 1, 1992; 118 (6): 1287-95.

Molecular cloning of xSRC-3, a novel transcription coactivator from Xenopus, that is related to AIB1, p/CIP, and TIF2., Kim HJ, Lee SK, Na SY, Choi HS, Lee JW, Lee JW., Mol Endocrinol. July 1, 1998; 12 (7): 1038-47.

Xenopus NF-Y pre-sets chromatin to potentiate p300 and acetylation-responsive transcription from the Xenopus hsp70 promoter in vivo., Li Q, Herrler M, Landsberger N, Kaludov N, Ogryzko VV, Nakatani Y, Wolffe AP., EMBO J. November 2, 1998; 17 (21): 6300-15.

Molecular cloning and expression of Xenopus p300/CBP., Fujii G, Tsuchiya R, Itoh Y, Tashiro K, Hirohashi S., Biochim Biophys Acta. November 26, 1998; 1443 (1-2): 41-54.                    

A tight control over Wnt action., Molenaar M, Destrée O., Int J Dev Biol. January 1, 1999; 43 (7): 675-80.    

The NeuroD1/BETA2 sequences essential for insulin gene transcription colocalize with those necessary for neurogenesis and p300/CREB binding protein binding., Sharma A, Moore M, Marcora E, Lee JE, Qiu Y, Samaras S, Stein R., Mol Cell Biol. January 1, 1999; 19 (1): 704-13.

Sonic Hedgehog-induced activation of the Gli1 promoter is mediated by GLI3., Dai P, Akimaru H, Tanaka Y, Maekawa T, Nakafuku M, Ishii S., J Biol Chem. March 19, 1999; 274 (12): 8143-52.

Activation of Xenopus genes required for lateral inhibition and neuronal differentiation during primary neurogenesis., Koyano-Nakagawa N, Wettstein D, Kintner C., Mol Cell Neurosci. October 1, 1999; 14 (4-5): 327-39.

p300 stimulates transcription instigated by ligand-bound thyroid hormone receptor at a step subsequent to chromatin disruption., Li Q, Imhof A, Collingwood TN, Urnov FD, Wolffe AP., EMBO J. October 15, 1999; 18 (20): 5634-52.

Neuralization of the Xenopus embryo by inhibition of p300/ CREB-binding protein function., Kato Y, Shi Y, Shi Y, He X., J Neurosci. November 1, 1999; 19 (21): 9364-73.          

A nuclear factor, ASC-2, as a cancer-amplified transcriptional coactivator essential for ligand-dependent transactivation by nuclear receptors in vivo., Lee SK, Anzick SL, Choi JE, Bubendorf L, Guan XY, Jung YK, Kallioniemi OP, Kononen J, Trent JM, Azorsa D, Jhun BH, Cheong JH, Lee YC, Meltzer PS, Lee JW, Lee JW., J Biol Chem. November 26, 1999; 274 (48): 34283-93.

The Yin-Yang of TCF/beta-catenin signaling., Barker N, Morin PJ, Clevers H., Adv Cancer Res. January 1, 2000; 77 1-24.

XTIF2, a Xenopus homologue of the human transcription intermediary factor, is required for a nuclear receptor pathway that also interacts with CBP to suppress Brachyury and XMyoD., de la Calle-Mustienes E, Gómez-Skarmeta JL., Mech Dev. March 1, 2000; 91 (1-2): 119-29.  

p300 requires its histone acetyltransferase activity and SRC-1 interaction domain to facilitate thyroid hormone receptor activation in chromatin., Li J, O'Malley BW, Wong J., Mol Cell Biol. March 1, 2000; 20 (6): 2031-42.

The p300/CBP acetyltransferases function as transcriptional coactivators of beta-catenin in vertebrates., Hecht A, Vleminckx K, Stemmler MP, van Roy F, Kemler R., EMBO J. April 17, 2000; 19 (8): 1839-50.

The transcriptional coactivator CBP interacts with beta-catenin to activate gene expression., Takemaru KI, Moon RT., J Cell Biol. April 17, 2000; 149 (2): 249-54.          

Repression of transforming-growth-factor-beta-mediated transcription by nuclear factor kappaB., Nagarajan RP, Chen F, Li W, Vig E, Harrington MA, Nakshatri H, Chen Y., Biochem J. June 15, 2000; 348 Pt 3 591-6.

A novel smad nuclear interacting protein, SNIP1, suppresses p300-dependent TGF-beta signal transduction., Kim RH, Wang D, Tsang M, Martin J, Huff C, de Caestecker MP, Parks WT, Meng X, Lechleider RJ, Wang T, Roberts AB., Genes Dev. July 1, 2000; 14 (13): 1605-16.            

CPEB proteins control two key steps in spermatogenesis in C. elegans., Luitjens C, Gallegos M, Kraemer B, Kimble J, Wickens M., Genes Dev. October 15, 2000; 14 (20): 2596-609.

Competitive recruitment of CBP and Rb-HDAC regulates UBF acetylation and ribosomal transcription., Pelletier G, Stefanovsky VY, Faubladier M, Hirschler-Laszkiewicz I, Savard J, Rothblum LI, Côté J, Moss T., Mol Cell. November 1, 2000; 6 (5): 1059-66.

Proteasome-mediated degradation of the coactivator p300 impairs cardiac transcription., Poizat C, Sartorelli V, Chung G, Kloner RA, Kedes L., Mol Cell Biol. December 1, 2000; 20 (23): 8643-54.

Functional domains of the LIM homeodomain protein Xlim-1 involved in negative regulation, transactivation, and axis formation in Xenopus embryos., Hiratani I, Mochizuki T, Tochimoto N, Taira M., Dev Biol. January 15, 2001; 229 (2): 456-67.

Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms., Sun Y, Nadal-Vicens M, Misono S, Lin MZ, Zubiaga A, Hua X, Fan G, Greenberg ME., Cell. February 9, 2001; 104 (3): 365-76.

Human T-cell leukemia virus type I oncoprotein Tax represses Smad-dependent transforming growth factor beta signaling through interaction with CREB-binding protein/p300., Mori N, Morishita M, Tsukazaki T, Giam CZ, Kumatori A, Tanaka Y, Yamamoto N., Blood. April 1, 2001; 97 (7): 2137-44.

Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor., Wang H, Huang ZQ, Xia L, Feng Q, Erdjument-Bromage H, Strahl BD, Briggs SD, Allis CD, Wong J, Tempst P, Zhang Y., Science. August 3, 2001; 293 (5531): 853-7.

Transcriptional coactivator protein p300. Kinetic characterization of its histone acetyltransferase activity., Thompson PR, Kurooka H, Nakatani Y, Cole PA., J Biol Chem. September 7, 2001; 276 (36): 33721-9.

p300-mediated tax transactivation from recombinant chromatin: histone tail deletion mimics coactivator function., Georges SA, Kraus WL, Luger K, Nyborg JK, Laybourn PJ., Mol Cell Biol. January 1, 2002; 22 (1): 127-37.

Calmodulin-dependent protein kinase IV mediated antagonism of BMP signaling regulates lineage and survival of hematopoietic progenitors., Walters MJ, Wayman GA, Notis JC, Goodman RH, Soderling TR, Christian JL., Development. March 1, 2002; 129 (6): 1455-66.

Selective requirements for histone H3 and H4 N termini in p300-dependent transcriptional activation from chromatin., An W, Palhan VB, Karymov MA, Leuba SH, Roeder RG., Mol Cell. April 1, 2002; 9 (4): 811-21.

Histone H1 represses estrogen receptor alpha transcriptional activity by selectively inhibiting receptor-mediated transcription initiation., Cheung E, Zarifyan AS, Kraus WL., Mol Cell Biol. April 1, 2002; 22 (8): 2463-71.

AR possesses an intrinsic hormone-independent transcriptional activity., Huang ZQ, Li J, Wong J., Mol Endocrinol. May 1, 2002; 16 (5): 924-37.

Mastermind mediates chromatin-specific transcription and turnover of the Notch enhancer complex., Fryer CJ, Lamar E, Turbachova I, Kintner C, Jones KA., Genes Dev. June 1, 2002; 16 (11): 1397-411.  

Signalling pathways in oocyte meiotic maturation., Schmitt A, Nebreda AR., J Cell Sci. June 15, 2002; 115 (Pt 12): 2457-9.  

Regulation of GRIP1 and CBP Coactivator activity by Rho GDI modulates estrogen receptor transcriptional enhancement., Su LF, Wang Z, Garabedian MJ., J Biol Chem. October 4, 2002; 277 (40): 37037-44.

Direct association of p300 with unmodified H3 and H4 N termini modulates p300-dependent acetylation and transcription of nucleosomal templates., An W, Roeder RG., J Biol Chem. January 17, 2003; 278 (3): 1504-10.

A role for cofactor-cofactor and cofactor-histone interactions in targeting p300, SWI/SNF and Mediator for transcription., Huang ZQ, Li J, Sachs LM, Cole PA, Wong J., EMBO J. May 1, 2003; 22 (9): 2146-55.

Tax recruitment of CBP/p300, via the KIX domain, reveals a potent requirement for acetyltransferase activity that is chromatin dependent and histone tail independent., Georges SA, Giebler HA, Cole PA, Luger K, Laybourn PJ, Nyborg JK., Mol Cell Biol. May 1, 2003; 23 (10): 3392-404.

Regulation of Smad signaling through a differential recruitment of coactivators and corepressors by ZEB proteins., Postigo AA, Depp JL, Taylor JJ, Kroll KL., EMBO J. May 15, 2003; 22 (10): 2453-62.

Progesterone and glucocorticoid receptors recruit distinct coactivator complexes and promote distinct patterns of local chromatin modification., Li X, Wong J, Tsai SY, Tsai MJ, O'Malley BW., Mol Cell Biol. June 1, 2003; 23 (11): 3763-73.

Molecular cloning and characterization of a hypoxia-responsive CITED3 cDNA from grass carp., Ng PK, Wu RS, Zhang ZP, Mok HO, Randall DJ, Kong RY., Comp Biochem Physiol B Biochem Mol Biol. October 1, 2003; 136 (2): 163-72.

Distinct expression profiles of transcriptional coactivators for thyroid hormone receptors during Xenopus laevis metamorphosis., Paul BD, Shi YB, Shi YB., Cell Res. December 1, 2003; 13 (6): 459-64.

The SNF2 domain protein family in higher vertebrates displays dynamic expression patterns in Xenopus laevis embryos., Linder B, Cabot RA, Schwickert T, Rupp RA., Gene. February 4, 2004; 326 59-66.                                              

SWI/SNF remodeling and p300-dependent transcription of histone variant H2ABbd nucleosomal arrays., Angelov D, Verdel A, An W, Bondarenko V, Hans F, Doyen CM, Studitsky VM, Hamiche A, Roeder RG, Bouvet P, Dimitrov S., EMBO J. October 1, 2004; 23 (19): 3815-24.

Disruption of dimerization and substrate phosphorylation inhibit factor inhibiting hypoxia-inducible factor (FIH) activity., Lancaster DE, McNeill LA, McDonough MA, Aplin RT, Hewitson KS, Pugh CW, Ratcliffe PJ, Schofield CJ., Biochem J. November 1, 2004; 383 (Pt. 3): 429-37.

Molecular constituents of neuronal AMPA receptors., Fukata Y, Tzingounis AV, Trinidad JC, Fukata M, Burlingame AL, Nicoll RA, Bredt DS., J Cell Biol. May 9, 2005; 169 (3): 399-404.        

Selective inhibition of TGF-beta responsive genes by Smad-interacting peptide aptamers from FoxH1, Lef1 and CBP., Cui Q, Lim SK, Zhao B, Hoffmann FM., Oncogene. June 2, 2005; 24 (24): 3864-74.

XBP1 forms a regulatory loop with BMP-4 and suppresses mesodermal and neural differentiation in Xenopus embryos., Cao Y, Cao Y, Knöchel S, Oswald F, Donow C, Zhao H, Knöchel W., Mech Dev. January 1, 2006; 123 (1): 84-96.      

Mechanism of polymerase II transcription repression by the histone variant macroH2A., Doyen CM, An W, Angelov D, Bondarenko V, Mietton F, Studitsky VM, Hamiche A, Roeder RG, Bouvet P, Dimitrov S., Mol Cell Biol. February 1, 2006; 26 (3): 1156-64.

Page(s): 1 2 Next