Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (94) GO Terms (9) Nucleotides (93) Proteins (35) Interactants (224) Wiki
XB-GENEPAGE-6492074

Papers associated with wee1



???displayGene.coCitedPapers???
2 ???displayGene.morpholinoPapers???

???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Increases in cyclin A/Cdk activity and in PP2A-B55 inhibition by FAM122A are key mitosis-inducing events., Lacroix B, Vigneron S, Labbé JC, Pintard L, Lionne C, Labesse G, Castro A, Lorca T., EMBO J. March 1, 2024; 43 (6): 993-1014.                                


Unraveling the interplay between PKA inhibition and Cdk1 activation during oocyte meiotic maturation., Santoni M, Meneau F, Sekhsoukh N, Castella S, Le T, Miot M, Daldello EM., Cell Rep. February 27, 2024; 43 (2): 113782.                  


A cyclin-dependent kinase-mediated phosphorylation switch of disordered protein condensation., Valverde JM, Dubra G, Phillips M, Haider A, Elena-Real C, Fournet A, Alghoul E, Chahar D, Andrés-Sanchez N, Paloni M, Bernadó P, van Mierlo G, Vermeulen M, van den Toorn H, Heck AJR, Constantinou A, Barducci A, Ghosh K, Sibille N, Knipscheer P, Krasinska L, Fisher D, Altelaar M., Nat Commun. October 9, 2023; 14 (1): 6316.                                      


CDC6 as a Key Inhibitory Regulator of CDK1 Activation Dynamics and the Timing of Mitotic Entry and Progression., El Dika M, Dudka D, Kloc M, Kubiak JZ., Biology (Basel). June 14, 2023; 12 (6):       


Cell cycle oscillations driven by two interlinked bistable switches., Parra-Rivas P, Ruiz-Reynés D, Gelens L., Mol Biol Cell. May 15, 2023; 34 (6): ar56.                    


Revisiting the multisite phosphorylation that produces the M-phase supershift of key mitotic regulators., Tan T, Wu C, Liu B, Pan BF, Hawke DH, Su Z, Liu S, Zhang W, Wang R, Lin SH, Kuang J., Mol Biol Cell. October 1, 2022; 33 (12): ar115.                                                      


Cell cycle control during early embryogenesis., Brantley SE, Di Talia S., Development. July 1, 2021; 148 (13):


Bistable, Biphasic Regulation of PP2A-B55 Accounts for the Dynamics of Mitotic Substrate Phosphorylation., Kamenz J, Gelens L, Ferrell JE., Curr Biol. February 22, 2021; 31 (4): 794-808.e6.                              


Ongoing replication forks delay the nuclear envelope breakdown upon mitotic entry., Hashimoto Y, Tanaka H., J Biol Chem. January 1, 2021; 296 100033.                


Translational Control of Xenopus Oocyte Meiosis: Toward the Genomic Era., Meneau F, Dupré A, Jessus C, Daldello EM., Cells. June 19, 2020; 9 (6):             


Nocodazole-Induced Expression and Phosphorylation of Anillin and Other Mitotic Proteins Are Decreased in DNA-Dependent Protein Kinase Catalytic Subunit-Deficient Cells and Rescued by Inhibition of the Anaphase-Promoting Complex/Cyclosome with proTAME but Not Apcin., Douglas P, Ye R, Radhamani S, Cobban A, Jenkins NP, Bartlett E, Roveredo J, Kettenbach AN, Lees-Miller SP., Mol Cell Biol. June 15, 2020; 40 (13):                   


Involvement of Myt1 kinase in the G2 phase of the first cell cycle in Xenopus laevis., Yoshitome S, Aiba Y, Yuge M, Furuno N, Watanabe M, Nakajo N., Biochem Biophys Res Commun. July 12, 2019; 515 (1): 139-144.      


A robust and tunable mitotic oscillator in artificial cells., Guan Y, Li Z, Wang S, Barnes PM, Liu X, Xu H, Jin M, Liu AP, Yang Q., Elife. April 5, 2018; 7                       


An interaction between myosin-10 and the cell cycle regulator Wee1 links spindle dynamics to mitotic progression in epithelia., Sandquist JC, Larson ME, Woolner S, Ding Z, Bement WM., J Cell Biol. March 5, 2018; 217 (3): 849-859.                


Phosphorylation Dynamics Dominate the Regulated Proteome during Early Xenopus Development., Peuchen EH, Cox OF, Sun L, Hebert AS, Coon JJ, Champion MM, Dovichi NJ, Huber PW., Sci Rep. November 15, 2017; 7 (1): 15647.                          


The Prozone Effect Accounts for the Paradoxical Function of the Cdk-Binding Protein Suc1/Cks., Ha SH, Kim SY, Ferrell JE., Cell Rep. February 16, 2016; 14 (6): 1408-1421.


Calcium signaling and meiotic exit at fertilization in Xenopus egg., Tokmakov AA, Stefanov VE, Iwasaki T, Sato K, Fukami Y., Int J Mol Sci. October 15, 2014; 15 (10): 18659-76.    


Changes in oscillatory dynamics in the cell cycle of early Xenopus laevis embryos., Tsai TY, Theriot JA, Ferrell JE., PLoS Biol. February 1, 2014; 12 (2): e1001788.              


Zar1 represses translation in Xenopus oocytes and binds to the TCS in maternal mRNAs with different characteristics than Zar2., Yamamoto TM, Cook JM, Kotter CV, Khat T, Silva KD, Ferreyros M, Holt JW, Knight JD, Charlesworth A., Biochim Biophys Acta. October 1, 2013; 1829 (10): 1034-46.


Mitotic trigger waves and the spatial coordination of the Xenopus cell cycle., Chang JB, Ferrell JE., Nature. August 29, 2013; 500 (7464): 603-7.                


Ser 15 of WEE1B is a potential PKA phosphorylation target in G2/M transition in one-cell stage mouse embryos., Liu C, Liu Y, Liu Y, Wu D, Luan Z, Wang E, Yu B., Mol Med Rep. June 1, 2013; 7 (6): 1929-37.


Histone deacetylase induces accelerated maturation in Xenopus laevis oocytes., Iwashita J, Kodama A, Konno Y, Abe T, Murata J., Dev Growth Differ. April 1, 2013; 55 (3): 319-29.


Xenopus laevis zygote arrest 2 (zar2) encodes a zinc finger RNA-binding protein that binds to the translational control sequence in the maternal Wee1 mRNA and regulates translation., Charlesworth A, Yamamoto TM, Cook JM, Silva KD, Kotter CV, Carter GS, Holt JW, Lavender HF, MacNicol AM, Ying Wang Y, Wilczynska A., Dev Biol. September 15, 2012; 369 (2): 177-90.              


Protein phosphatase 2A controls the order and dynamics of cell-cycle transitions., Krasinska L, Domingo-Sananes MR, Kapuy O, Parisis N, Harker B, Moorhead G, Rossignol M, Novák B, Fisher D., Mol Cell. November 4, 2011; 44 (3): 437-50.


CENP-C recruits M18BP1 to centromeres to promote CENP-A chromatin assembly., Moree B, Meyer CB, Fuller CJ, Straight AF., J Cell Biol. September 19, 2011; 194 (6): 855-71.                            


In vitro centromere and kinetochore assembly on defined chromatin templates., Guse A, Carroll CW, Moree B, Fuller CJ, Straight AF., Nature. August 28, 2011; 477 (7364): 354-8.      


Mitotic progression becomes irreversible in prometaphase and collapses when Wee1 and Cdc25 are inhibited., Potapova TA, Sivakumar S, Flynn JN, Li R, Gorbsky GJ., Mol Biol Cell. April 15, 2011; 22 (8): 1191-206.              


Ultrasensitivity in the Regulation of Cdc25C by Cdk1., Trunnell NB, Poon AC, Kim SY, Ferrell JE., Mol Cell. February 4, 2011; 41 (3): 263-74.


Endoplasmic reticulum remodeling tunes IP₃-dependent Ca²+ release sensitivity., Sun L, Yu F, Ullah A, Hubrack S, Daalis A, Jung P, Machaca K., PLoS One. January 1, 2011; 6 (11): e27928.            


Greatwall phosphorylates an inhibitor of protein phosphatase 2A that is essential for mitosis., Mochida S, Maslen SL, Skehel M, Hunt T., Science. December 17, 2010; 330 (6011): 1670-3.


Constant regulation of both the MPF amplification loop and the Greatwall-PP2A pathway is required for metaphase II arrest and correct entry into the first embryonic cell cycle., Lorca T, Bernis C, Vigneron S, Burgess A, Brioudes E, Labbé JC, Castro A., J Cell Sci. July 1, 2010; 123 (Pt 13): 2281-91.              


Dissecting the M phase-specific phosphorylation of serine-proline or threonine-proline motifs., Wu CF, Wang R, Liang Q, Liang J, Li W, Jung SY, Qin J, Lin SH, Kuang J., Mol Biol Cell. May 1, 2010; 21 (9): 1470-81.              


A two-step inactivation mechanism of Myt1 ensures CDK1/cyclin B activation and meiosis I entry., Ruiz EJ, Vilar M, Nebreda AR., Curr Biol. April 27, 2010; 20 (8): 717-23.


A bifunctional regulatory element in human somatic Wee1 mediates cyclin A/Cdk2 binding and Crm1-dependent nuclear export., Li C, Andrake M, Dunbrack R, Enders GH., Mol Cell Biol. January 1, 2010; 30 (1): 116-30.


Greatwall maintains mitosis through regulation of PP2A., Vigneron S, Brioudes E, Burgess A, Labbé JC, Lorca T, Castro A., EMBO J. September 16, 2009; 28 (18): 2786-93.                    


Fine tuning the cell cycle: activation of the Cdk1 inhibitory phosphorylation pathway during mitotic exit., Potapova TA, Daum JR, Byrd KS, Gorbsky GJ., Mol Biol Cell. March 1, 2009; 20 (6): 1737-48.


Analyses of zebrafish and Xenopus oocyte maturation reveal conserved and diverged features of translational regulation of maternal cyclin B1 mRNA., Zhang Y, Sheets MD., BMC Dev Biol. January 28, 2009; 9 7.          


Internalization of plasma membrane Ca2+-ATPase during Xenopus oocyte maturation., El-Jouni W, Haun S, Machaca K., Dev Biol. December 1, 2008; 324 (1): 99-107.        


Meiotic inactivation of Xenopus Myt1 by CDK/XRINGO, but not CDK/cyclin, via site-specific phosphorylation., Ruiz EJ, Hunt T, Nebreda AR., Mol Cell. October 24, 2008; 32 (2): 210-20.


Rapid cycling and precocious termination of G1 phase in cells expressing CDK1AF., Pomerening JR, Ubersax JA, Ferrell JE., Mol Biol Cell. August 1, 2008; 19 (8): 3426-41.


A novel mRNA 3' untranslated region translational control sequence regulates Xenopus Wee1 mRNA translation., Wang YY, Charlesworth A, Byrd SM, Gregerson R, MacNicol MC, MacNicol AM., Dev Biol. May 15, 2008; 317 (2): 454-66.


Roles of Greatwall kinase in the regulation of cdc25 phosphatase., Zhao Y, Haccard O, Wang R, Yu J, Kuang J, Jessus C, Goldberg ML., Mol Biol Cell. April 1, 2008; 19 (4): 1317-27.                        


Feedback regulation of opposing enzymes generates robust, all-or-none bistable responses., Ferrell JE., Curr Biol. March 25, 2008; 18 (6): R244-5.


Wee1 kinase alters cyclin E/Cdk2 and promotes apoptosis during the early embryonic development of Xenopus laevis., Wroble BN, Finkielstein CV, Sible JC., BMC Dev Biol. October 25, 2007; 7 119.          


Substrate competition as a source of ultrasensitivity in the inactivation of Wee1., Kim SY, Ferrell JE., Cell. March 23, 2007; 128 (6): 1133-45.


Mechanism for inactivation of the mitotic inhibitory kinase Wee1 at M phase., Okamoto K, Sagata N., Proc Natl Acad Sci U S A. March 6, 2007; 104 (10): 3753-8.


Role for non-proteolytic control of M-phase-promoting factor activity at M-phase exit., D'Angiolella V, Palazzo L, Santarpia C, Costanzo V, Grieco D., PLoS One. February 28, 2007; 2 (2): e247.          


New pathways from PKA to the Cdc2/cyclin B complex in oocytes: Wee1B as a potential PKA substrate., Han SJ, Conti M., Cell Cycle. February 1, 2006; 5 (3): 227-31.


Multisite M-phase phosphorylation of Xenopus Wee1A., Kim SY, Song EJ, Lee KJ, Ferrell JE., Mol Cell Biol. December 1, 2005; 25 (23): 10580-90.


Changes in regulatory phosphorylation of Cdc25C Ser287 and Wee1 Ser549 during normal cell cycle progression and checkpoint arrests., Stanford JS, Ruderman JV., Mol Biol Cell. December 1, 2005; 16 (12): 5749-60.

???pagination.result.page??? 1 2 ???pagination.result.next???