Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (53) GO Terms (6) Nucleotides (122) Proteins (45) Interactants (94) Wiki
XB--6492154

Papers associated with xt6l



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Frog Skin Innate Immune Defences: Sensing and Surviving Pathogens., Varga JFA, Bui-Marinos MP, Katzenback BA., Front Immunol. September 12, 2018; 9 3128.  


Peptidomic analysis of the extensive array of host-defense peptides in skin secretions of the dodecaploid frog Xenopus ruwenzoriensis (Pipidae)., Coquet L, Kolodziejek J, Jouenne T, Nowotny N, King JD, Conlon JM., Comp Biochem Physiol Part D Genomics Proteomics. September 1, 2016; 19 18-24.


Metabolic and immune impairments induced by the endocrine disruptors benzo[a]pyrene and triclosan in Xenopus tropicalis., Regnault C, Willison J, Veyrenc S, Airieau A, Méresse P, Fortier M, Fournier M, Brousseau P, Raveton M, Reynaud S., Chemosphere. July 1, 2016; 155 519-527.


Physicochemical and biological characterizations of Pxt peptides from amphibian (Xenopus tropicalis) skin., Shigeri Y, Horie M, Yoshida T, Hagihara Y, Imura T, Inagaki H, Haramoto Y, Ito Y, Asashima M., J Biochem. June 1, 2016; 159 (6): 619-29.


Host-defense and trefoil factor family peptides in skin secretions of the Mawa clawed frog Xenopus boumbaensis (Pipidae)., Conlon JM, Mechkarska M, Kolodziejek J, Leprince J, Coquet L, Jouenne T, Vaudry H, Nowotny N, King JD., Peptides. October 1, 2015; 72 44-9.


Evidence from peptidomic analysis of skin secretions that allopatric populations of Xenopus gilli (Anura:Pipidae) constitute distinct lineages., Conlon JM, Mechkarska M, Coquet L, Leprince J, Jouenne T, Vaudry H, Measey GJ., Peptides. January 1, 2015; 63 118-25.


Host-defense peptides from skin secretions of Fraser's clawed frog Xenopus fraseri (Pipidae): Further insight into the evolutionary history of the Xenopodinae., Conlon JM, Mechkarska M, Kolodziejek J, Nowotny N, Coquet L, Leprince J, Jouenne T, Vaudry H., Comp Biochem Physiol Part D Genomics Proteomics. December 1, 2014; 12 45-52.


Antimicrobial and immunomodulatory properties of PGLa-AM1, CPF-AM1, and magainin-AM1: Potent activity against oral pathogens., McLean DT, McCrudden MT, Linden GJ, Irwin CR, Conlon JM, Lundy FT., Regul Pept. November 1, 2014; .


Host-defense peptides from skin secretions of the octoploid frogs Xenopus vestitus and Xenopus wittei (Pipidae): insights into evolutionary relationships., Mechkarska M, Coquet L, Leprince J, Jouenne T, Vaudry H, Michalak K, Michalak P, Conlon JM., Comp Biochem Physiol Part D Genomics Proteomics. September 1, 2014; 11 20-8.


Host-defense peptides with therapeutic potential from skin secretions of frogs from the family pipidae., Conlon JM, Mechkarska M., Pharmaceuticals (Basel). January 15, 2014; 7 (1): 58-77.          


Peptidomic analysis of skin secretions provides insight into the taxonomic status of the African clawed frogs Xenopus victorianus and Xenopus laevis sudanensis (Pipidae)., King JD, Mechkarska M, Meetani MA, Conlon JM., Comp Biochem Physiol Part D Genomics Proteomics. September 1, 2013; 8 (3): 250-4.


A comparison of host-defense peptides in skin secretions of female Xenopus laevis × Xenopus borealis and X. borealis × X. laevis F1 hybrids., Mechkarska M, Prajeep M, Leprince J, Vaudry H, Meetani MA, Evans BJ, Conlon JM., Peptides. July 1, 2013; 45 1-8.


Caerulein precursor fragment (CPF) peptides from the skin secretions of Xenopus laevis and Silurana epitropicalis are potent insulin-releasing agents., Srinivasan D, Mechkarska M, Abdel-Wahab YH, Flatt PR, Conlon JM., Biochimie. February 1, 2013; 95 (2): 429-35.


Frog skin peptides (tigerinin-1R, magainin-AM1, -AM2, CPF-AM1, and PGla-AM1) stimulate secretion of glucagon-like peptide 1 (GLP-1) by GLUTag cells., Ojo OO, Conlon JM, Flatt PR, Abdel-Wahab YH., Biochem Biophys Res Commun. February 1, 2013; 431 (1): 14-8.    


Host-defense peptides in skin secretions of the tetraploid frog Silurana epitropicalis with potent activity against methicillin-resistant Staphylococcus aureus (MRSA)., Conlon JM, Mechkarska M, Prajeep M, Sonnevend A, Coquet L, Leprince J, Jouenne T, Vaudry H, King JD., Peptides. September 1, 2012; 37 (1): 113-9.


Host-defense peptides in skin secretions of African clawed frogs (Xenopodinae, Pipidae)., Conlon JM, Mechkarska M, King JD., Gen Comp Endocrinol. May 1, 2012; 176 (3): 513-8.    


Host-defense peptides from skin secretions of the tetraploid frogs Xenopus petersii and Xenopus pygmaeus, and the octoploid frog Xenopus lenduensis (Pipidae)., King JD, Mechkarska M, Coquet L, Leprince J, Jouenne T, Vaudry H, Takada K, Conlon JM., Peptides. January 1, 2012; 33 (1): 35-43.


Peptidomic analysis of skin secretions demonstrates that the allopatric populations of Xenopus muelleri (Pipidae) are not conspecific., Mechkarska M, Ahmed E, Coquet L, Leprince J, Jouenne T, Vaudry H, King JD, Conlon JM., Peptides. July 1, 2011; 32 (7): 1502-8.


Caerulein-and xenopsin-related peptides with insulin-releasing activities from skin secretions of the clawed frogs, Xenopus borealis and Xenopus amieti (Pipidae)., Zahid OK, Mechkarska M, Ojo OO, Abdel-Wahab YH, Flatt PR, Meetani MA, Conlon JM., Gen Comp Endocrinol. June 1, 2011; 172 (2): 314-20.


Genome duplications within the Xenopodinae do not increase the multiplicity of antimicrobial peptides in Silurana paratropicalis and Xenopus andrei skin secretions., Mechkarska M, Eman A, Coquet L, Jérôme L, Jouenne T, Vaudry H, King JD, Takada K, Conlon JM., Comp Biochem Physiol Part D Genomics Proteomics. June 1, 2011; 6 (2): 206-12.


Purification and properties of antimicrobial peptides from skin secretions of the Eritrea clawed frog Xenopus clivii (Pipidae)., Conlon JM, Mechkarska M, Ahmed E, Leprince J, Vaudry H, King JD, Takada K., Comp Biochem Physiol C Toxicol Pharmacol. April 1, 2011; 153 (3): 350-4.


Antimicrobial peptides with therapeutic potential from skin secretions of the Marsabit clawed frog Xenopus borealis (Pipidae)., Mechkarska M, Ahmed E, Coquet L, Leprince J, Jouenne T, Vaudry H, King JD, Conlon JM., Comp Biochem Physiol C Toxicol Pharmacol. November 1, 2010; 152 (4): 467-72.


Orthologs of magainin, PGLa, procaerulein-derived, and proxenopsin-derived peptides from skin secretions of the octoploid frog Xenopus amieti (Pipidae)., Conlon JM, Al-Ghaferi N, Ahmed E, Meetani MA, Leprince J, Nielsen PF., Peptides. June 1, 2010; 31 (6): 989-94.


Identical skin toxins by convergent molecular adaptation in frogs., Roelants K, Fry BG, Norman JA, Clynen E, Schoofs L, Bossuyt F., Curr Biol. January 26, 2010; 20 (2): 125-30.    


Molecular features of thyroid hormone-regulated skin remodeling in Xenopus laevis during metamorphosis., Suzuki K, Machiyama F, Nishino S, Watanabe Y, Kashiwagi K, Kashiwagi A, Yoshizato K., Dev Growth Differ. May 1, 2009; 51 (4): 411-27.                


In vitro development of Xenopus skin glands producing 5-hydroxytryptamine and caerulein., Seki T, Kikuyama S, Yanaihara N., Experientia. November 15, 1995; 51 (11): 1040-4.


Structure of two cDNAs encoding cholecystokinin precursors from the brain of Xenopus laevis., Wechselberger C, Kreil G., J Mol Endocrinol. June 1, 1995; 14 (3): 357-64.


Purification of antimicrobial peptides from an extract of the skin of Xenopus laevis using heparin-affinity HPLC: characterization by ion-spray mass spectrometry., James S, Gibbs BF, Toney K, Bennett HP., Anal Biochem. February 15, 1994; 217 (1): 84-90.


Antimicrobial peptides in the stomach of Xenopus laevis., Moore KS, Bevins CL, Brasseur MM, Tomassini N, Turner K, Eck H, Zasloff M., J Biol Chem. October 15, 1991; 266 (29): 19851-7.              


Isolation and sequence of canine xenopsin and an extended fragment from its precursor., Carraway RE, Mitra SP., Peptides. January 1, 1990; 11 (4): 747-52.


Development of Xenopus laevis skin glands producing 5-hydroxytryptamine and caerulein., Seki T, Kikuyama S, Yanaihara N., Cell Tissue Res. December 1, 1989; 258 (3): 483-9.


Neurons expressing thyrotropin-releasing hormone-like messenger ribonucleic acid are widely distributed in Xenopus laevis brain., Zoeller RT, Conway KM., Gen Comp Endocrinol. October 1, 1989; 76 (1): 139-46.      


Xenopus laevis skin Arg-Xaa-Val-Arg-Gly-endoprotease. A highly specific protease cleaving after a single arginine of a consensus sequence of peptide hormone precursors., Kuks PF, Créminon C, Leseney AM, Bourdais J, Morel A, Cohen P., J Biol Chem. September 5, 1989; 264 (25): 14609-12.


Identification of highly acidic peptides from processing of the skin prepropeptides of Xenopus laevis., Nutkins JC, Williams DH., Eur J Biochem. April 15, 1989; 181 (1): 97-102.


The genes for the frog skin peptides GLa, xenopsin, levitide and caerulein contain a homologous export exon encoding a signal sequence and part of an amphiphilic peptide., Kuchler K, Kreil G, Sures I., Eur J Biochem. February 1, 1989; 179 (2): 281-5.


Immunocytochemical evidence for the colocalization of neurotensin/xenopsin- and gastrin/caerulein-immunoreactive substances in Xenopus laevis gastrointestinal tract., Flucher BE, Lenglachner-Bachinger C, Feurle GE., Gen Comp Endocrinol. October 1, 1988; 72 (1): 54-62.    


Relationship of promagainin to three other prohormones from the skin of Xenopus laevis: a different perspective., Hunt LT, Barker WC., FEBS Lett. June 20, 1988; 233 (2): 282-8.


Conserved exon-intron organization in two different caerulein precursor genes of Xenopus laevis. Additional detection of an exon potentially coding for a new peptide., Vlasak R, Wiborg O, Richter K, Burgschwaiger S, Vuust J, Kreil G., Eur J Biochem. November 16, 1987; 169 (1): 53-8.


Biosynthesis and degradation of peptides derived from Xenopus laevis prohormones., Giovannini MG, Poulter L, Gibson BW, Williams DH., Biochem J. April 1, 1987; 243 (1): 113-20.


Skin peptides in Xenopus laevis: morphological requirements for precursor processing in developing and regenerating granular skin glands., Flucher BE, Lenglachner-Bachinger C, Pohlhammer K, Adam H, Mollay C., J Cell Biol. December 1, 1986; 103 (6 Pt 1): 2299-309.                


Isolation of a dipeptidyl aminopeptidase, a putative processing enzyme, from skin secretion of Xenopus laevis., Mollay C, Vilas U, Hutticher A, Kreil G., Eur J Biochem. October 1, 1986; 160 (1): 31-5.


Novel peptide fragments originating from PGLa and the caerulein and xenopsin precursors from Xenopus laevis., Gibson BW, Poulter L, Williams DH, Maggio JE., J Biol Chem. April 25, 1986; 261 (12): 5341-9.


Sequence of preprocaerulein cDNAs cloned from skin of Xenopus laevis. A small family of precursors containing one, three, or four copies of the final product., Richter K, Egger R, Kreil G., J Biol Chem. March 15, 1986; 261 (8): 3676-80.


A mass spectrometric method for the identification of novel peptides in Xenopus laevis skin secretions., Gibson BW, Poulter L, Williams DH., J Nat Prod. January 1, 1986; 49 (1): 26-34.


Complete nucleotide sequence of mRNA for caerulein precursor from Xenopus skin: the mRNA contains an unusual repetitive structure., Wakabayashi T, Kato H, Tachibana S., Nucleic Acids Res. March 25, 1985; 13 (6): 1817-28.


Biosynthesis of peptides in the skin of Xenopus laevis: isolation of novel peptides predicted from the sequence of cloned cDNAs., Richter K, Aschauer H, Kreil G., Peptides. January 1, 1985; 6 Suppl 3 17-21.


A mass spectrometric assay for novel peptides: application to Xenopus laevis skin secretions., Gibson BW, Poulter L, Williams DH., Peptides. January 1, 1985; 6 Suppl 3 23-7.


An unusual repetitive structure of caerulein mRNA from the skin of Xenopus laevis., Wakabayashi T, Kato H, Tachibana S., Gene. November 1, 1984; 31 (1-3): 295-9.


Is caerulein amphibian CCK?, Dimaline R., Peptides. January 1, 1983; 4 (4): 457-62.


Biosynthesis of caerulein in the skin of Xenopus laevis: partial sequences of precursors as deduced from cDNA clones., Hoffmann W, Bach TC, Seliger H, Kreil G., EMBO J. January 1, 1983; 2 (1): 111-4.

???pagination.result.page??? 1 2 ???pagination.result.next???