Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (317) GO Terms (11) Nucleotides (95) Proteins (63) Interactants (889) Wiki
XB-GENEPAGE-853971

Papers associated with cftr



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? 1 2 3 4 5 6 7 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Multiple mutations in highly conserved residues are found in mildly affected cystic fibrosis patients., Dean M, White MB, Amos J, Gerrard B, Stewart C, Khaw KT, Leppert M., Cell. June 1, 1990; 61 (5): 863-70.


Cl- channel activity in Xenopus oocytes expressing the cystic fibrosis gene., Bear CE, Duguay F, Naismith AL, Kartner N, Hanrahan JW, Riordan JR., J Biol Chem. October 15, 1991; 266 (29): 19142-5.


Chloride conductance expressed by delta F508 and other mutant CFTRs in Xenopus oocytes., Drumm ML, Wilkinson DJ, Smit LS, Worrell RT, Strong TV, Frizzell RA, Dawson DC, Collins FS., Science. December 20, 1991; 254 (5039): 1797-9.


CFTR protein expression in primary and cultured epithelia., Zeitlin PL, Crawford I, Lu L, Woel S, Cohen ME, Donowitz M, Montrose MH, Hamosh A, Cutting GR, Gruenert D., Proc Natl Acad Sci U S A. January 1, 1992; 89 (1): 344-7.


cAMP-stimulated ion currents in Xenopus oocytes expressing CFTR cRNA., Cunningham SA, Worrell RT, Benos DJ, Frizzell RA., Am J Physiol. March 1, 1992; 262 (3 Pt 1): C783-8.


Identification and developmental expression of the Xenopus laevis cystic fibrosis transmembrane conductance regulator gene., Tucker SJ, Tannahill D, Higgins CF., Hum Mol Genet. May 1, 1992; 1 (2): 77-82.


Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive., Denning GM, Anderson MP, Amara JF, Marshall J, Smith AE, Welsh MJ., Nature. August 27, 1992; 358 (6389): 761-4.


Expression of cystic fibrosis transmembrane regulator Cl- channels in heart., Levesque PC, Hart PJ, Hume JR, Kenyon JL, Horowitz B., Circ Res. October 1, 1992; 71 (4): 1002-7.


A multifunctional aqueous channel formed by CFTR., Hasegawa H, Skach W, Baker O, Calayag MC, Lingappa V, Verkman AS., Science. November 27, 1992; 258 (5087): 1477-9.


Receptors that couple to 2 classes of G proteins increase cAMP and activate CFTR expressed in Xenopus oocytes., Uezono Y, Bradley J, Min C, McCarty NA, Quick M, Riordan JR, Chavkin C, Zinn K, Lester HA, Davidson N., Recept Channels. January 1, 1993; 1 (3): 233-41.


Expression of an abundant alternatively spliced form of the cystic fibrosis transmembrane conductance regulator (CFTR) gene is not associated with a cAMP-activated chloride conductance., Strong TV, Wilkinson DJ, Mansoura MK, Devor DC, Henze K, Yang Y, Wilson JM, Cohn JA, Dawson DC, Frizzell RA., Hum Mol Genet. March 1, 1993; 2 (3): 225-30.


Voltage-dependent block of the cystic fibrosis transmembrane conductance regulator Cl- channel by two closely related arylaminobenzoates., McCarty NA, McDonough S, Cohen BN, Riordan JR, Davidson N, Lester HA., J Gen Physiol. July 1, 1993; 102 (1): 1-23.


Functional roles of the nucleotide-binding folds in the activation of the cystic fibrosis transmembrane conductance regulator., Smit LS, Wilkinson DJ, Mansoura MK, Collins FS, Dawson DC., Proc Natl Acad Sci U S A. November 1, 1993; 90 (21): 9963-7.


Differential acidic pH sensitivity of delta F508 CFTR Cl- channel activity in lipid bilayers., Sherry AM, Cuppoletti J, Malinowska DH., Am J Physiol. March 1, 1994; 266 (3 Pt 1): C870-5.


Expression of the plasmodial pfmdr1 gene in mammalian cells is associated with increased susceptibility to chloroquine., van Es HH, Karcz S, Chu F, Cowman AF, Vidal S, Gros P, Schurr E., Mol Cell Biol. April 1, 1994; 14 (4): 2419-28.


The substituted benzimidazolone NS004 is an opener of the cystic fibrosis chloride channel., Gribkoff VK, Champigny G, Barbry P, Dworetzky SI, Meanwell NA, Lazdunski M., J Biol Chem. April 15, 1994; 269 (15): 10983-6.


Radiotracer studies of cystic fibrosis transmembrane conductance regulator expressed in Xenopus oocytes., Ohrui T, Skach W, Thompson M, Matsumoto-Pon J, Calayag C, Widdicombe JH., Am J Physiol. June 1, 1994; 266 (6 Pt 1): C1586-93.


Coupled secretion of chloride and mucus in skin of Xenopus laevis: possible role for CFTR., Engelhardt JF, Smith SS, Allen E, Yankaskas JR, Dawson DC, Wilson JM., Am J Physiol. August 1, 1994; 267 (2 Pt 1): C491-500.


Mobilization of intracellular Ca2+ and stimulation of cyclic AMP production by kappa opioid receptors expressed in Xenopus oocytes., Kaneko S, Nakamura S, Adachi K, Akaike A, Satoh M., Brain Res Mol Brain Res. December 1, 1994; 27 (2): 258-64.


Functional expression of adrenergic and opioid receptors in Xenopus oocytes: interaction between alpha 2- and beta 2-adrenergic receptors., Birnbaum AK, Wotta DR, Law PY, Wilcox GL., Brain Res Mol Brain Res. January 1, 1995; 28 (1): 72-80.


Missense mutation (G480C) in the CFTR gene associated with protein mislocalization but normal chloride channel activity., Smit LS, Strong TV, Wilkinson DJ, Macek M, Mansoura MK, Wood DL, Cole JL, Cutting GR, Cohn JA, Dawson DC., Hum Mol Genet. February 1, 1995; 4 (2): 269-73.


Detection of adenylate cyclase-coupled receptors in Xenopus oocytes by coexpression with cystic fibrosis transmembrane conductance regulator., Grygorczyk R, Abramovitz M, Boie Y, Bastien L, Adam M., Anal Biochem. May 1, 1995; 227 (1): 27-31.


Alternate translation initiation codons can create functional forms of cystic fibrosis transmembrane conductance regulator., Carroll TP, Morales MM, Fulmer SB, Allen SS, Flotte TR, Cutting GR, Guggino WB., J Biol Chem. May 19, 1995; 270 (20): 11941-6.


Two cystic fibrosis transmembrane conductance regulator mutations have different effects on both pulmonary phenotype and regulation of outwardly rectified chloride currents., Fulmer SB, Schwiebert EM, Morales MM, Guggino WB, Cutting GR., Proc Natl Acad Sci U S A. July 18, 1995; 92 (15): 6832-6.


Identification and partial characterization of a domain in CFTR that may bind cyclic nucleotides directly., Sullivan SK, Agellon LB, Schick R., Curr Biol. October 1, 1995; 5 (10): 1159-67.


Mutations in the putative pore-forming domain of CFTR do not change anion selectivity of the cAMP activated Cl- conductance., Hipper A, Mall M, Greger R, Kunzelmann K., FEBS Lett. November 6, 1995; 374 (3): 312-6.


Epitope tagging permits cell surface detection of functional CFTR., Howard M, DuVall MD, Devor DC, Dong JY, Henze K, Frizzell RA., Am J Physiol. December 1, 1995; 269 (6 Pt 1): C1565-76.


Mechanisms of hepatic transport and bile secretion., Erlinger S., Acta Gastroenterol Belg. January 1, 1996; 59 (2): 159-62.


CFTR: the nucleotide binding folds regulate the accessibility and stability of the activated state., Wilkinson DJ, Mansoura MK, Watson PY, Smit LS, Collins FS, Dawson DC., J Gen Physiol. January 1, 1996; 107 (1): 103-19.


N-Acetyl-L-cysteine and its derivatives activate a Cl- conductance in epithelial cells., Köttgen M, Busch AE, Hug MJ, Greger R, Kunzelmann K., Pflugers Arch. February 1, 1996; 431 (4): 549-55.


Wild type but not deltaF508 CFTR inhibits Na+ conductance when coexpressed in Xenopus oocytes., Mall M, Hipper A, Greger R, Kunzelmann K., FEBS Lett. February 26, 1996; 381 (1-2): 47-52.


Identification of a protein that confers calcitonin gene-related peptide responsiveness to oocytes by using a cystic fibrosis transmembrane conductance regulator assay., Luebke AE, Dahl GP, Roos BA, Dickerson IM., Proc Natl Acad Sci U S A. April 16, 1996; 93 (8): 3455-60.


Molecular cloning and expression of a cyclic AMP-activated chloride conductance regulator: a novel ATP-binding cassette transporter., van Kuijck MA, van Aubel RA, Busch AE, Lang F, Russel FG, Bindels RJ, van Os CH, Deen PM., Proc Natl Acad Sci U S A. May 28, 1996; 93 (11): 5401-6.


Chloride channels: a molecular perspective., Jentsch TJ., Curr Opin Neurobiol. June 1, 1996; 6 (3): 303-10.


Review article: new insights into the mechanisms of hepatic transport and bile secretion., Erlinger S., J Gastroenterol Hepatol. June 1, 1996; 11 (6): 575-9.


Both the wild type and a functional isoform of CFTR are expressed in kidney., Morales MM, Carroll TP, Morita T, Schwiebert EM, Devuyst O, Wilson PD, Lopes AG, Stanton BA, Dietz HC, Cutting GR, Guggino WB., Am J Physiol. June 1, 1996; 270 (6 Pt 2): F1038-48.


cAMP-regulated trafficking of epitope-tagged CFTR., Howard M, Jilling T, DuVall M, Frizzell RA., Kidney Int. June 1, 1996; 49 (6): 1642-8.


Cystic fibrosis gene encodes a cAMP-dependent chloride channel in heart., Hart P, Warth JD, Levesque PC, Collier ML, Geary Y, Horowitz B, Hume JR., Proc Natl Acad Sci U S A. June 25, 1996; 93 (13): 6343-8.


cAMP stimulation of CFTR-expressing Xenopus oocytes activates a chromanol-inhibitable K+ conductance., Mall M, Kunzelmann K, Hipper A, Busch AE, Greger R., Pflugers Arch. July 1, 1996; 432 (3): 516-22.


Regulation of the CFTR chloride channel from humans and sharks., Hanrahan JW, Mathews CJ, Grygorczyk R, Tabcharani JA, Grzelczak Z, Chang XB, Riordan JR., J Exp Zool. July 1, 1996; 275 (4): 283-91.


Sensitivity of a renal K+ channel (ROMK2) to the inhibitory sulfonylurea compound glibenclamide is enhanced by coexpression with the ATP-binding cassette transporter cystic fibrosis transmembrane regulator., McNicholas CM, Guggino WB, Schwiebert EM, Hebert SC, Giebisch G, Egan ME., Proc Natl Acad Sci U S A. July 23, 1996; 93 (15): 8083-8.


Function of Xenopus cystic fibrosis transmembrane conductance regulator (CFTR) Cl channels and use of human-Xenopus chimeras to investigate the pore properties of CFTR., Price MP, Ishihara H, Sheppard DN, Welsh MJ., J Biol Chem. October 11, 1996; 271 (41): 25184-91.


CFTR-dependent membrane insertion is linked to stimulation of the CFTR chloride conductance., Takahashi A, Watkins SC, Howard M, Frizzell RA., Am J Physiol. December 1, 1996; 271 (6 Pt 1): C1887-94.


Expression of the cystic fibrosis phenotype in a renal amphibian epithelial cell line., Ling BN, Zuckerman JB, Lin C, Harte BJ, McNulty KA, Smith PR, Gomez LM, Worrell RT, Eaton DC, Kleyman TR., J Biol Chem. January 3, 1997; 272 (1): 594-600.


Inhibition of epithelial Na+ currents by intracellular domains of the cystic fibrosis transmembrane conductance regulator., Kunzelmann K, Kiser GL, Schreiber R, Riordan JR., FEBS Lett. January 6, 1997; 400 (3): 341-4.


mu-opioid receptor regulates CFTR coexpressed in Xenopus oocytes in a cAMP independent manner., Wotta DR, Birnbaum AK, Wilcox GL, Elde R, Law PY., Brain Res Mol Brain Res. February 1, 1997; 44 (1): 55-65.


CFTR activation: additive effects of stimulatory and inhibitory phosphorylation sites in the R domain., Wilkinson DJ, Strong TV, Mansoura MK, Wood DL, Smith SS, Collins FS, Dawson DC., Am J Physiol. July 1, 1997; 273 (1 Pt 1): L127-33.


KVLQT channels are inhibited by the K+ channel blocker 293B., Bleich M, Briel M, Busch AE, Lang HJ, Gerlach U, Gögelein H, Greger R, Kunzelmann K., Pflugers Arch. August 1, 1997; 434 (4): 499-501.


Direct action of genistein on CFTR., Weinreich F, Wood PG, Riordan JR, Nagel G., Pflugers Arch. August 1, 1997; 434 (4): 484-91.


Structural cues involved in endoplasmic reticulum degradation of G85E and G91R mutant cystic fibrosis transmembrane conductance regulator., Xiong X, Bragin A, Widdicombe JH, Cohn J, Skach WR., J Clin Invest. September 1, 1997; 100 (5): 1079-88.

???pagination.result.page??? 1 2 3 4 5 6 7 ???pagination.result.next???