Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (308) GO Terms (36) Nucleotides (81) Proteins (42) Interactants (804) Wiki
XB-GENEPAGE-853971

Papers associated with cftr



Limit to papers also referencing gene:

Results 1 - 50 of 308 results

Page(s): 1 2 3 4 5 6 7 Next

Sort Newest To Oldest Sort Oldest To Newest

The Effect of Dynasore Upon the Negative Interaction Between ENaC and CFTR Channels in Xenopus laevis Oocytes., Palma AG, Kotsias BA., J Membr Biol. January 1, 2022; 255 (1): 61-69.


Clinical and molecular characterization of the R751L-CFTR mutation., Haq IJ, Althaus M, Gardner AI, Yeoh HY, Joshi U, Saint-Criq V, Verdon B, Townshend J, O'Brien C, Ben-Hamida M, Thomas M, Bourke S, van der Sluijs P, Braakman I, Ward C, Gray MA, Brodlie M., Am J Physiol Lung Cell Mol Physiol. January 1, 2021; 320 (2): L288-L300.


Simple binding of protein kinase A prior to phosphorylation allows CFTR anion channels to be opened by nucleotides., Mihályi C, Iordanov I, Töröcsik B, Csanády L., Proc Natl Acad Sci U S A. January 1, 2020; 117 (35): 21740-21746.


Engineered transfer RNAs for suppression of premature termination codons., Lueck JD, Yoon JS, Perales-Puchalt A, Mackey AL, Infield DT, Behlke MA, Pope MR, Weiner DB, Skach WR, McCray PB, Ahern CA., Nat Commun. January 1, 2019; 10 (1): 822.          


Cystic fibrosis drug ivacaftor stimulates CFTR channels at picomolar concentrations., Csanády L, Töröcsik B., Elife. January 1, 2019; 8           


VX-770-mediated potentiation of numerous human CFTR disease mutants is influenced by phosphorylation level., Cui G, Stauffer BB, Imhoff BR, Rab A, Hong JS, Sorscher EJ, McCarty NA., Sci Rep. January 1, 2019; 9 (1): 13460.              


Retinoic acid promotes stem cell differentiation and embryonic development by transcriptionally activating CFTR., Li X, Fok KL, Guo J, Wang Y, Liu Z, Chen Z, Wang C, Ruan YC, Yu SS, Zhao H, Wu J, Jiang X, Chan HC., Biochim Biophys Acta Mol Cell Res. April 1, 2018; 1865 (4): 605-615.


CFTR supports cell death through ROS-dependent activation of TMEM16F (anoctamin 6)., Simões F, Ousingsawat J, Wanitchakool P, Fonseca A, Cabrita I, Benedetto R, Schreiber R, Kunzelmann K., Pflugers Arch. January 1, 2018; 470 (2): 305-314.


δβγ-ENaC is inhibited by CFTR but stimulated by cAMP in Xenopus laevis oocytes., Rauh R, Hoerner C, Korbmacher C., Am J Physiol Lung Cell Mol Physiol. February 1, 2017; 312 (2): L277-L287.


Loss of Cystic Fibrosis Transmembrane Regulator Impairs Intestinal Oxalate Secretion., Knauf F, Thomson RB, Heneghan JF, Jiang Z, Adebamiro A, Thomson CL, Barone C, Asplin JR, Egan ME, Alper SL, Aronson PS., J Am Soc Nephrol. January 1, 2017; 28 (1): 242-249.


CFTR-β-catenin interaction regulates mouse embryonic stem cell differentiation and embryonic development., Liu Z, Guo J, Wang Y, Weng Z, Huang B, Yu MK, Zhang X, Yuan P, Zhao H, Chan WY, Jiang X, Chan HC., Cell Death Differ. January 1, 2017; 24 (1): 98-110.


Protein kinase A regulates C-terminally truncated CaV 1.2 in Xenopus oocytes: roles of N- and C-termini of the α1C subunit., Oz S, Pankonien I, Belkacemi A, Flockerzi V, Klussmann E, Haase H, Dascal N., J Physiol. January 1, 2017; 595 (10): 3181-3202.


Bacterial Sphingomyelinase is a State-Dependent Inhibitor of the Cystic Fibrosis Transmembrane conductance Regulator (CFTR)., Stauffer BB, Cui G, Cottrill KA, Infield DT, McCarty NA., Sci Rep. January 1, 2017; 7 (1): 2931.                


Molecular Structure of the Human CFTR Ion Channel., Liu F, Zhang Z, Csanády L, Gadsby DC, Chen J., Cell. January 1, 2017; 169 (1): 85-95.e8.


Hydrogen sulfide stimulates CFTR in Xenopus oocytes by activation of the cAMP/PKA signalling axis., Perniss A, Preiss K, Nier M, Althaus M., Sci Rep. January 1, 2017; 7 (1): 3517.        


The Epithelial Sodium Channel Is a Modifier of the Long-Term Nonprogressive Phenotype Associated with F508del CFTR Mutations., Agrawal PB, Wang R, Li HL, Schmitz-Abe K, Simone-Roach C, Chen J, Shi J, Louie T, Sheng S, Towne MC, Brainson CF, Matthay MA, Kim CF, Bamshad M, Emond MJ, Gerard NP, Kleyman TR, Gerard C., Am J Respir Cell Mol Biol. January 1, 2017; 57 (6): 711-720.


Mammalian odorant receptor tuning breadth persists across distinct odorant panels., Kepchia D, Sherman B, Haddad R, Luetje CW., PLoS One. January 1, 2017; 12 (9): e0185329.          


Asymmetry of movements in CFTR''s two ATP sites during pore opening serves their distinct functions., Sorum B, Töröcsik B, Csanády L., Elife. January 1, 2017; 6                         


Functional and molecular identification of a TASK-1 potassium channel regulating chloride secretion through CFTR channels in the shark rectal gland: implications for cystic fibrosis., Telles CJ, Decker SE, Motley WW, Peters AW, Mehr AP, Frizzell RA, Forrest JN., Am J Physiol Cell Physiol. December 1, 2016; 311 (6): C884-C894.


Rattlesnake Phospholipase A2 Increases CFTR-Chloride Channel Current and Corrects ∆F508CFTR Dysfunction: Impact in Cystic Fibrosis., Faure G, Bakouh N, Lourdel S, Odolczyk N, Premchandar A, Servel N, Hatton A, Ostrowski MK, Xu H, Saul FA, Moquereau C, Bitam S, Pranke I, Planelles G, Teulon J, Herrmann H, Roldan A, Zielenkiewicz P, Dadlez M, Lukacs GL, Sermet-Gaudelus I, Ollero M, Corringer PJ, Edelman A., J Mol Biol. July 17, 2016; 428 (14): 2898-915.


CFTR channel in oocytes from Xenopus laevis and its regulation by xShroom1 protein., Palma AG, Galizia L, Kotsias BA, Marino GI., Pflugers Arch. January 1, 2016; 468 (5): 871-80.


Obligate coupling of CFTR pore opening to tight nucleotide-binding domain dimerization., Mihályi C, Töröcsik B, Csanády L., Elife. January 1, 2016; 5         


Potentiators exert distinct effects on human, murine, and Xenopus CFTR., Cui G, Khazanov N, Stauffer BB, Infield DT, Imhoff BR, Senderowitz H, McCarty NA., Am J Physiol Lung Cell Mol Physiol. January 1, 2016; 311 (2): L192-207.


Mechanosensitive activation of CFTR by increased cell volume and hydrostatic pressure but not shear stress., Vitzthum C, Clauss WG, Fronius M., Biochim Biophys Acta. November 1, 2015; 1848 (11 Pt A): 2942-51.


Murine and human CFTR exhibit different sensitivities to CFTR potentiators., Cui G, McCarty NA., Am J Physiol Lung Cell Mol Physiol. October 1, 2015; 309 (7): L687-99.


Functional characteristics of L1156F-CFTR associated with alcoholic chronic pancreatitis in Japanese., Kondo S, Fujiki K, Ko SB, Yamamoto A, Nakakuki M, Ito Y, Shcheynikov N, Kitagawa M, Naruse S, Ishiguro H., Am J Physiol Gastrointest Liver Physiol. August 15, 2015; 309 (4): G260-9.


Cysteine accessibility probes timing and extent of NBD separation along the dimer interface in gating CFTR channels., Chaves LA, Gadsby DC., J Gen Physiol. April 1, 2015; 145 (4): 261-83.                      


ANP and CNP activate CFTR expressed in Xenopus laevis oocytes by direct activation of PKA., Stahl K, Stahl M, de Jonge HR, Forrest JN., J Recept Signal Transduct Res. January 1, 2015; 35 (5): 493-504.


Insulin is involved in transcriptional regulation of NKCC and the CFTR Cl(-) channel through PI3K activation and ERK inactivation in renal epithelial cells., Sun H, Niisato N, Inui T, Marunaka Y., J Physiol Sci. November 1, 2014; 64 (6): 433-43.


ERp29 regulates epithelial sodium channel functional expression by promoting channel cleavage., Grumbach Y, Bikard Y, Suaud L, Chanoux RA, Rubenstein RC., Am J Physiol Cell Physiol. October 15, 2014; 307 (8): C701-9.


Counteracting suppression of CFTR and voltage-gated K+ channels by a bacterial pathogenic factor with the natural product tannic acid., Ramu Y, Xu Y, Xu Y, Shin HG, Lu Z., Elife. October 14, 2014; 3 e03683.        


Structure-activity analysis of a CFTR channel potentiator: Distinct molecular parts underlie dual gating effects., Csanády L, Töröcsik B., J Gen Physiol. October 1, 2014; 144 (4): 321-36.                    


Cystic fibrosis transmembrane conductance regulator (CFTR) potentiators protect G551D but not ΔF508 CFTR from thermal instability., Liu X, Dawson DC., Biochemistry. September 9, 2014; 53 (35): 5613-8.        


Three charged amino acids in extracellular loop 1 are involved in maintaining the outer pore architecture of CFTR., Cui G, Rahman KS, Infield DT, Kuang C, Prince CZ, McCarty NA., J Gen Physiol. August 1, 2014; 144 (2): 159-79.                          


Aqueous cigarette smoke extract induces a voltage-dependent inhibition of CFTR expressed in Xenopus oocytes., Moran AR, Norimatsu Y, Dawson DC, MacDonald KD., Am J Physiol Lung Cell Mol Physiol. February 1, 2014; 306 (3): L284-91.


Catalyst-like modulation of transition states for CFTR channel opening and closing: new stimulation strategy exploits nonequilibrium gating., Csanády L, Töröcsik B., J Gen Physiol. February 1, 2014; 143 (2): 269-87.                        


Serum and glucocorticoid-inducible kinase1 increases plasma membrane wt-CFTR in human airway epithelial cells by inhibiting its endocytic retrieval., Bomberger JM, Coutermarsh BA, Barnaby RL, Sato JD, Chapline MC, Stanton BA., PLoS One. January 1, 2014; 9 (2): e89599.                  


Discovery of novel ligands for mouse olfactory receptor MOR42-3 using an in silico screening approach and in vitro validation., Bavan S, Sherman B, Luetje CW, Abaffy T., PLoS One. January 1, 2014; 9 (3): e92064.            


Comparative expression analysis of cysteine-rich intestinal protein family members crip1, 2 and 3 during Xenopus laevis embryogenesis., Hempel A, Kühl SJ., Int J Dev Biol. January 1, 2014; 58 (10-12): 841-9.                                              


Cystic fibrosis transmembrane conductance regulator-mRNA delivery: a novel alternative for cystic fibrosis gene therapy., Bangel-Ruland N, Tomczak K, Fernández Fernández E, Leier G, Leciejewski B, Rudolph C, Rosenecker J, Weber WM., J Gene Med. November 1, 2013; 15 (11-12): 414-26.


Characterization of SLC26A9 in patients with CF-like lung disease., Bakouh N, Bienvenu T, Thomas A, Ehrenfeld J, Liote H, Roussel D, Duquesnoy P, Farman N, Viel M, Cherif-Zahar B, Amselem S, Taam RA, Edelman A, Planelles G, Sermet-Gaudelus I., Hum Mutat. October 1, 2013; 34 (10): 1404-14.


Two salt bridges differentially contribute to the maintenance of cystic fibrosis transmembrane conductance regulator (CFTR) channel function., Cui G, Freeman CS, Knotts T, Prince CZ, Kuang C, McCarty NA., J Biol Chem. July 12, 2013; 288 (28): 20758-67.


Conformational changes in the catalytically inactive nucleotide-binding site of CFTR., Csanády L, Mihályi C, Szollosi A, Töröcsik B, Vergani P., J Gen Physiol. July 1, 2013; 142 (1): 61-73.                  


Influenza matrix protein 2 alters CFTR expression and function through its ion channel activity., Londino JD, Lazrak A, Jurkuvenaite A, Collawn JF, Noah JW, Matalon S., Am J Physiol Lung Cell Mol Physiol. May 1, 2013; 304 (9): L582-92.


Gout-causing Q141K mutation in ABCG2 leads to instability of the nucleotide-binding domain and can be corrected with small molecules., Woodward OM, Tukaye DN, Cui J, Greenwell P, Constantoulakis LM, Parker BS, Rao A, Köttgen M, Maloney PC, Guggino WB., Proc Natl Acad Sci U S A. March 26, 2013; 110 (13): 5223-8.


Human trace amine-associated receptor TAAR5 can be activated by trimethylamine., Wallrabenstein I, Kuklan J, Weber L, Zborala S, Werner M, Altmüller J, Becker C, Schmidt A, Hatt H, Hummel T, Gisselmann G., PLoS One. January 1, 2013; 8 (2): e54950.          


A characterization of the Manduca sexta serotonin receptors in the context of olfactory neuromodulation., Dacks AM, Reale V, Pi Y, Zhang W, Dacks JB, Nighorn AJ, Evans PD., PLoS One. January 1, 2013; 8 (7): e69422.          


Locating a plausible binding site for an open-channel blocker, GlyH-101, in the pore of the cystic fibrosis transmembrane conductance regulator., Norimatsu Y, Ivetac A, Alexander C, O'Donnell N, Frye L, Sansom MS, Dawson DC., Mol Pharmacol. December 1, 2012; 82 (6): 1042-55.


Nedd4-2 does not regulate wt-CFTR in human airway epithelial cells., Koeppen K, Chapline C, Sato JD, Stanton BA., Am J Physiol Lung Cell Mol Physiol. October 15, 2012; 303 (8): L720-7.


A universally conserved residue in the SUR1 subunit of the KATP channel is essential for translating nucleotide binding at SUR1 into channel opening., de Wet H, Shimomura K, Aittoniemi J, Ahmad N, Lafond M, Sansom MS, Ashcroft FM., J Physiol. October 15, 2012; 590 (20): 5025-36.            

Page(s): 1 2 3 4 5 6 7 Next