Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (30) GO Terms (4) Nucleotides (209) Proteins (48) Interactants (224) Wiki
XB-GENEPAGE-952813

Papers associated with prnp



Limit to papers also referencing gene:
1 paper(s) referencing morpholinos

Results 1 - 30 of 30 results

Page(s): 1

Sort Newest To Oldest Sort Oldest To Newest

Clustering of Aromatic Residues in Prion-like Domains Can Tune the Formation, State, and Organization of Biomolecular Condensates., Holehouse AS, Ginell GM, Griffith D, Böke E., Biochemistry. January 1, 2021; 60 (47): 3566-3581.                  


Predation threats for a 24-h period activated the extension of axons in the brains of Xenopus tadpoles., Mori T, Kitani Y, Hatakeyama D, Machida K, Goto-Inoue N, Hayakawa S, Yamamoto N, Kashiwagi K, Kashiwagi A., Sci Rep. January 1, 2020; 10 (1): 11737.                    


Thyroid disruption properties of three indoor dust chemicals tested in Silurana tropicalis tadpoles., Carlsson G, Pohl J, Athanassiadis I, Norrgren L, Weiss J., J Appl Toxicol. January 1, 2019; 39 (9): 1248-1256.


Amyloid-like Self-Assembly of a Cellular Compartment., Boke E, Ruer M, Wühr M, Coughlin M, Lemaitre R, Gygi SP, Alberti S, Drechsel D, Hyman AA, Mitchison TJ., Cell. July 28, 2016; 166 (3): 637-650.


Kruppel-like factor family genes are expressed during Xenopus embryogenesis and involved in germ layer formation and body axis patterning., Gao Y, Cao Q, Lu L, Zhang X, Zhang Z, Zhang Z, Dong X, Jia W, Cao Y, Cao Y., Dev Dyn. October 1, 2015; 244 (10): 1328-46.                                    


A recurrent de novo mutation in KCNC1 causes progressive myoclonus epilepsy., Muona M, Berkovic SF, Dibbens LM, Oliver KL, Maljevic S, Bayly MA, Joensuu T, Canafoglia L, Franceschetti S, Michelucci R, Markkinen S, Heron SE, Hildebrand MS, Andermann E, Andermann F, Gambardella A, Tinuper P, Licchetta L, Scheffer IE, Criscuolo C, Filla A, Ferlazzo E, Ahmad J, Ahmad A, Baykan B, Said E, Topcu M, Riguzzi P, King MD, Ozkara C, Andrade DM, Engelsen BA, Crespel A, Lindenau M, Lohmann E, Saletti V, Massano J, Privitera M, Espay AJ, Kauffmann B, Duchowny M, Møller RS, Straussberg R, Afawi Z, Ben-Zeev B, Samocha KE, Daly MJ, Petrou S, Lerche H, Palotie A, Lehesjoki AE., Nat Genet. January 1, 2015; 47 (1): 39-46.      


The inhibition of functional expression of calcium channels by prion protein demonstrates competition with α2δ for GPI-anchoring pathways., Alvarez-Laviada A, Kadurin I, Senatore A, Chiesa R, Dolphin AC., Biochem J. March 1, 2014; 458 (2): 365-74.          


Metabotropic glutamate receptor 5 is a coreceptor for Alzheimer aβ oligomer bound to cellular prion protein., Um JW, Kaufman AC, Kostylev M, Heiss JK, Stagi M, Takahashi H, Kerrisk ME, Vortmeyer A, Wisniewski T, Koleske AJ, Gunther EC, Nygaard HB, Strittmatter SM., Neuron. September 4, 2013; 79 (5): 887-902.


Structural and functional divergence of growth hormone-releasing hormone receptors in early sarcopterygians: lungfish and Xenopus., Tam JK, Chow BK, Lee LT., PLoS One. January 1, 2013; 8 (1): e53482.          


A nine amino acid domain is essential for mutant prion protein toxicity., Westergard L, Turnbaugh JA, Harris DA., J Neurosci. September 28, 2011; 31 (39): 14005-17.


Origin of secretin receptor precedes the advent of tetrapoda: evidence on the separated origins of secretin and orexin., Tam JK, Lau KW, Lee LT, Chu JY, Ng KM, Fournier A, Vaudry H, Chow BK., PLoS One. April 1, 2011; 6 (4): e19384.            


The serendipitous origin of chordate secretin peptide family members., Cardoso JC, Vieira FA, Gomes AS, Power DM., BMC Evol Biol. May 6, 2010; 10 135.            


Mutagenesis studies in transgenic Xenopus intermediate pituitary cells reveal structural elements necessary for correct prion protein biosynthesis., van Rosmalen JW, Martens GJ., Dev Neurobiol. May 1, 2007; 67 (6): 715-27.        


Transgene expression of prion protein induces crinophagy in intermediate pituitary cells., van Rosmalen JW, Martens GJ., Dev Neurobiol. January 1, 2007; 67 (1): 81-96.              


Prion protein from Xenopus laevis: overexpression in Escherichia coli of the His-tagged protein and production of polyclonal antibodies., Pagliato L, Negri A, Nonnis S, Taverna F, Sangiorgio L, Ronchi S, Tedeschi G., Protein Expr Purif. April 1, 2006; 46 (2): 489-94.


Prion protein mRNA expression in Xenopus laevis: no induction during melanotrope cell activation., van Rosmalen JW, Born JM, Martens GJ., Dev Biol. February 23, 2006; 1075 (1): 20-5.        


Cell type-specific transgene expression of the prion protein in Xenopus intermediate pituitary cells., van Rosmalen JW, Martens GJ., FEBS J. February 1, 2006; 273 (4): 847-62.


NMR assignment of the Xenopus laevis prion protein fragment xlPrP (98-226)., Pérez DR, Wüthrich K., J Biomol NMR. March 1, 2005; 31 (3): 260.


Prion protein NMR structures of chickens, turtles, and frogs., Calzolai L, Lysek DA, Pérez DR, Güntert P, Wüthrich K., Proc Natl Acad Sci U S A. January 18, 2005; 102 (3): 651-5.


A neuronal isoform of the aplysia CPEB has prion-like properties., Si K, Lindquist S, Kandel ER., Cell. December 26, 2003; 115 (7): 879-91.


The human prion octarepeat fragment prevents and reverses the inhibitory action of copper in the P2X4 receptor without modifying the zinc action., Lorca RA, Chacón M, Barría MI, Inestrosa NC, Huidobro-Toro JP., J Neurochem. May 1, 2003; 85 (3): 709-16.


Essential role of the prion protein N terminus in subcellular trafficking and half-life of cellular prion protein., Nunziante M, Gilch S, Schätzl HM., J Biol Chem. February 7, 2003; 278 (6): 3726-34.


Properties of the cellular prion protein expressed in Xenopus oocytes., Connolly JG, Tate RJ, McLennan NF, Brown D, Telling GC, Fraser J, Head MW., Neuroreport. July 2, 2002; 13 (9): 1229-33.


cDNA sequence and tissue expression of Fugu rubripes prion protein-like: a candidate for the teleost orthologue of tetrapod PrPs., Suzuki T, Kurokawa T, Hashimoto H, Sugiyama M., Biochem Biophys Res Commun. June 21, 2002; 294 (4): 912-7.


Molecular cloning of the cDNA coding for Xenopus laevis prion protein., Strumbo B, Ronchi S, Bolis LC, Simonic T., FEBS Lett. November 16, 2001; 508 (2): 170-4.


The ATP-gated P2X1 ion channel acts as a positive regulator of platelet responses to collagen., Oury C, Toth-Zsamboki E, Thys C, Tytgat J, Vermylen J, Hoylaerts MF., Thromb Haemost. November 1, 2001; 86 (5): 1264-71.


Properties of cytotoxic peptide-formed ion channels., Kourie JI, Shorthouse AA., Am J Physiol Cell Physiol. June 1, 2000; 278 (6): C1063-87.


Determinants of carboxyl-terminal domain translocation during prion protein biogenesis., De Fea KA, Nakahara DH, Calayag MC, Yost CS, Mirels LF, Prusiner SB, Lingappa VR., J Biol Chem. June 17, 1994; 269 (24): 16810-20.


Non-hydrophobic extracytoplasmic determinant of stop transfer in the prion protein., Yost CS, Lopez CD, Prusiner SB, Myers RM, Lingappa VR., Nature. February 15, 1990; 343 (6259): 669-72.


Evidence for a secretory form of the cellular prion protein., Hay B, Prusiner SB, Lingappa VR., Biochemistry. December 15, 1987; 26 (25): 8110-5.

Page(s): 1