Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (41) GO Terms (5) Nucleotides (2370) Proteins (68) Interactants (637) Wiki
XB-GENEPAGE-955425

Papers associated with hspa8



???displayGene.coCitedPapers???
1 ???displayGene.morpholinoPapers???

???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Single Cell Proteomics by Data-Independent Acquisition To Study Embryonic Asymmetry in Xenopus laevis., Saha-Shah A, Esmaeili M, Sidoli S, Hwang H, Yang J, Klein PS, Garcia BA., Anal Chem. July 16, 2019; 91 (14): 8891-8899.        


Novel functions of the ubiquitin-independent proteasome system in regulating Xenopus germline development., Hwang H, Jin Z, Krishnamurthy VV, Saha A, Klein PS, Garcia B, Mei W, King ML, Zhang K, Yang J., Development. April 23, 2019; 146 (8):                       


A liquid-like organelle at the root of motile ciliopathy., Huizar RL, Lee C, Boulgakov AA, Horani A, Tu F, Marcotte EM, Brody SL, Wallingford JB., Elife. December 18, 2018; 7                               


The regulation of heat shock proteins in response to dehydration in Xenopus laevis., Luu BE, Wijenayake S, Malik AI, Storey KB., Cell Stress Chaperones. January 1, 2018; 23 (1): 45-53.


The active Hsc70/tau complex can be exploited to enhance tau turnover without damaging microtubule dynamics., Fontaine SN, Martin MD, Akoury E, Assimon VA, Borysov S, Nordhues BA, Sabbagh JJ, Cockman M, Gestwicki JE, Zweckstetter M, Dickey CA., Hum Mol Genet. July 15, 2015; 24 (14): 3971-81.


High-resolution analysis of gene activity during the Xenopus mid-blastula transition., Collart C, Owens ND, Bhaw-Rosun L, Cooper B, De Domenico E, Patrushev I, Sesay AK, Smith JN, Smith JC, Gilchrist MJ., Development. May 1, 2014; 141 (9): 1927-39.                  


Lamellipodin and the Scar/WAVE complex cooperate to promote cell migration in vivo., Law AL, Vehlow A, Kotini M, Dodgson L, Soong D, Theveneau E, Bodo C, Taylor E, Navarro C, Perera U, Michael M, Dunn GA, Bennett D, Mayor R, Krause M., J Cell Biol. November 25, 2013; 203 (4): 673-89.                    


Hsc70 negatively regulates epithelial sodium channel trafficking at multiple sites in epithelial cells., Chanoux RA, Shubin CB, Robay A, Suaud L, Rubenstein RC., Am J Physiol Cell Physiol. October 1, 2013; 305 (7): C776-87.


Imbalance of Hsp70 family variants fosters tau accumulation., Jinwal UK, Akoury E, Abisambra JF, O'Leary JC, Thompson AD, Blair LJ, Jin Y, Bacon J, Nordhues BA, Cockman M, Zhang J, Li P, Zhang B, Borysov S, Uversky VN, Biernat J, Mandelkow E, Gestwicki JE, Zweckstetter M, Dickey CA., FASEB J. April 1, 2013; 27 (4): 1450-9.


Proteomics reveals a switch in CDK1-associated proteins upon M-phase exit during the Xenopus laevis oocyte to embryo transition., Marteil G, Gagné JP, Borsuk E, Richard-Parpaillon L, Poirier GG, Kubiak JZ., Int J Biochem Cell Biol. January 1, 2012; 44 (1): 53-64.


New CYP1 genes in the frog Xenopus (Silurana) tropicalis: induction patterns and effects of AHR agonists during development., Jönsson ME, Berg C, Goldstone JV, Stegeman JJ., Toxicol Appl Pharmacol. January 15, 2011; 250 (2): 170-83.


Hsc70 rapidly engages tau after microtubule destabilization., Jinwal UK, O'Leary JC, Borysov SI, Jones JR, Li Q, Koren J, Abisambra JF, Vestal GD, Lawson LY, Johnson AG, Blair LJ, Jin Y, Miyata Y, Gestwicki JE, Dickey CA., J Biol Chem. May 28, 2010; 285 (22): 16798-805.


Differential effects of Hsc70 and Hsp70 on the intracellular trafficking and functional expression of epithelial sodium channels., Goldfarb SB, Kashlan OB, Watkins JN, Suaud L, Yan W, Kleyman TR, Rubenstein RC., Proc Natl Acad Sci U S A. April 11, 2006; 103 (15): 5817-22.


An energy-dependent maturation step is required for release of the cystic fibrosis transmembrane conductance regulator from early endoplasmic reticulum biosynthetic machinery., Oberdorf J, Pitonzo D, Skach WR., J Biol Chem. November 18, 2005; 280 (46): 38193-202.


Hydrogen peroxide induces heat shock protein and proto-oncogene mRNA accumulation in Xenopus laevis A6 kidney epithelial cells., Muller M, Gauley J, Heikkila JJ., Can J Physiol Pharmacol. July 1, 2004; 82 (7): 523-9.


Analysis of genes related to expression of aromatase and estradiol-regulated genes during sex differentiation in Xenopus embryos., Akatsuka N, Kobayashi H, Watanabe E, Iino T, Miyashita K, Miyata S., Gen Comp Endocrinol. May 1, 2004; 136 (3): 382-8.


Enhanced accumulation of constitutive heat shock protein mRNA is an initial response of eye tissue to mild hyperthermia in vivo in adult Xenopus laevis., Ali A, Heikkila JJ., Can J Physiol Pharmacol. November 1, 2002; 80 (11): 1119-23.


Cysteine string protein interacts with and modulates the maturation of the cystic fibrosis transmembrane conductance regulator., Zhang H, Peters KW, Sun F, Marino CR, Lang J, Burgoyne RD, Frizzell RA., J Biol Chem. August 9, 2002; 277 (32): 28948-58.                    


Xenopus small heat shock proteins, Hsp30C and Hsp30D, maintain heat- and chemically denatured luciferase in a folding-competent state., Abdulle R, Mohindra A, Fernando P, Heikkila JJ., Cell Stress Chaperones. January 1, 2002; 7 (1): 6-16.


Specific association of a set of molecular chaperones including HSP90 and Cdc37 with MOK, a member of the mitogen-activated protein kinase superfamily., Miyata Y, Ikawa Y, Shibuya M, Nishida E., J Biol Chem. June 15, 2001; 276 (24): 21841-8.


HSP70 is involved in the control of chromosomal transcription in the amphibian oocyte., Corporeau CD, Angelier N, Penrad-Mobayed M., Exp Cell Res. November 1, 2000; 260 (2): 222-32.


Cysteine-string protein: the chaperone at the synapse., Chamberlain LH, Burgoyne RD., J Neurochem. May 1, 2000; 74 (5): 1781-9.


Stress-induced, tissue-specific enrichment of hsp70 mRNA accumulation in Xenopus laevis embryos., Lang L, Miskovic D, Lo M, Heikkila JJ., Cell Stress Chaperones. January 1, 2000; 5 (1): 36-44.


Unique features of Chinese hamster S13 gene relative to its human and Xenopus analogs., Chen MS, Laszlo A., DNA Cell Biol. June 1, 1999; 18 (6): 463-70.


Processing of vertebrate box C/D small nucleolar RNAs in plant cells., Leader DJ, Clark GP, Boag J, Watters JA, Simpson CG, Watkins NJ, Maxwell ES, Brown JW., Eur J Biochem. April 1, 1998; 253 (1): 154-60.


Molecular cloning of a cDNA encoding a Xenopus laevis 70-kDa heat shock cognate protein, hsc70.II., Ali A, Salter-Cid L, Flajnik MJ, Heikkila JJ., Biochim Biophys Acta. December 11, 1996; 1309 (3): 174-8.


Evidence for the existence of a novel mechanism for the nuclear import of Hsc70., Lamian V, Small GM, Feldherr CM., Exp Cell Res. October 10, 1996; 228 (1): 84-91.


Direct and indirect association of the small GTPase ran with nuclear pore proteins and soluble transport factors: studies in Xenopus laevis egg extracts., Saitoh H, Cooke CA, Burgess WH, Earnshaw WC, Dasso M., Mol Biol Cell. September 1, 1996; 7 (9): 1319-34.


Isolation and characterization of a cDNA encoding a Xenopus 70-kDa heat shock cognate protein, Hsc70.I., Ali A, Salter-Cid L, Flajnik MF, Heikkila JJ., Comp Biochem Physiol B Biochem Mol Biol. April 1, 1996; 113 (4): 681-7.


Elements essential for processing intronic U14 snoRNA are located at the termini of the mature snoRNA sequence and include conserved nucleotide boxes C and D., Watkins NJ, Leverette RD, Xia L, Andrews MT, Maxwell ES., RNA. February 1, 1996; 2 (2): 118-33.


Intronic U14 snoRNAs of Xenopus laevis are located in two different parent genes and can be processed from their introns during early oogenesis., Xia L, Liu J, Sage C, Trexler EB, Andrews MT, Maxwell ES., Nucleic Acids Res. December 11, 1995; 23 (23): 4844-9.


The RCC1 protein interacts with Ran, RanBP1, hsc70, and a 340-kDa protein in Xenopus extracts., Saitoh H, Dasso M., J Biol Chem. May 5, 1995; 270 (18): 10658-63.


Processing of U14 small nucleolar RNA from three different introns of the mouse 70-kDa-cognate-heat-shock-protein pre-messenger RNA., Barbhaiya H, Leverette RD, Liu J, Maxwell ES., Eur J Biochem. December 15, 1994; 226 (3): 765-71.


hsc70 moderates the heat shock (stress) response in Xenopus laevis oocytes and binds to denatured protein inducers., Mifflin LC, Cohen RE., J Biol Chem. June 3, 1994; 269 (22): 15718-23.


The role of nucleoplasmin in chromatin assembly and disassembly., Laskey RA, Mills AD, Philpott A, Leno GH, Dilworth SM, Dingwall C., Philos Trans R Soc Lond B Biol Sci. March 29, 1993; 339 (1289): 263-9; discussion 268-9.


Mouse U14 snRNA is a processed intron of the cognate hsc70 heat shock pre-messenger RNA., Leverette RD, Andrews MT, Maxwell ES., Cell. December 24, 1992; 71 (7): 1215-21.


The transport of proteins into the nucleus requires the 70-kilodalton heat shock protein or its cytosolic cognate., Shi Y, Shi Y, Thomas JO., Mol Cell Biol. May 1, 1992; 12 (5): 2186-92.


The effect of carboxyl-terminal deletions on the nuclear transport rate of rat hsc70., Mandell RB, Feldherr CM., Exp Cell Res. January 1, 1992; 198 (1): 164-9.


Identification of two HSP70-related Xenopus oocyte proteins that are capable of recycling across the nuclear envelope., Mandell RB, Feldherr CM., J Cell Biol. November 1, 1990; 111 (5 Pt 1): 1775-83.


Evolutionary conservation of the biochemical properties of p53: specific interaction of Xenopus laevis p53 with simian virus 40 large T antigen and mammalian heat shock proteins 70., Soussi T, Caron de Fromentel C, Stürzbecher HW, Ullrich S, Jenkins J, May P., J Virol. September 1, 1989; 63 (9): 3894-901.


The developmental expression of the heat-shock response in Xenopus laevis., Davis RE, King ML., Development. February 1, 1989; 105 (2): 213-22.

???pagination.result.page??? 1