Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (166) GO Terms (5) Nucleotides (105) Proteins (46) Interactants (919) Wiki
XB-GENEPAGE-963093

Papers associated with hoxb9



???displayGene.coCitedPapers???
44 ???displayGene.morpholinoPapers???

???pagination.result.count???

???pagination.result.page??? 1 2 3 4 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Regulation of gene expression downstream of a novel Fgf/Erk pathway during Xenopus development., Cowell LM, King M, West H, Broadsmith M, Genever P, Pownall ME, Isaacs HV., PLoS One. January 1, 2023; 18 (10): e0286040.                                  


Goosecoid Controls Neuroectoderm Specification via Dual Circuits of Direct Repression and Indirect Stimulation in Xenopus Embryos., Umair Z, Kumar V, Goutam RS, Kumar S, Kumar S, Lee U, Kim J., Mol Cells. October 31, 2021; 44 (10): 723-735.          


The cytokine FAM3B/PANDER is an FGFR ligand that promotes posterior development in Xenopus., Zhang F, Zhu X, Wang P, He Q, Huang H, Zheng T, Li Y, Jia H, Xu L, Zhao H, Colozza G, Tao Q, De Robertis EM, Ding Y., Proc Natl Acad Sci U S A. May 18, 2021; 118 (20):           


Xenopus leads the way: Frogs as a pioneering model to understand the human brain., Exner CRT, Willsey HR., Genesis. February 1, 2021; 59 (1-2): e23405.          


Dusp1 modulates activin/smad2 mediated germ layer specification via FGF signal inhibition in Xenopus embryos., Umair Z, Kumar S, Rafiq K, Kumar V, Reman ZU, Lee SH, Kim S, Lee JY, Lee U, Kim J., Anim Cells Syst (Seoul). November 27, 2020; 24 (6): 359-370.            


Foxd4l1.1 negatively regulates transcription of neural repressor ventx1.1 during neuroectoderm formation in Xenopus embryos., Kumar S, Kumar S, Umair Z, Kumar V, Kumar S, Lee U, Kim J., Sci Rep. October 8, 2020; 10 (1): 16780.            


Fetal Alcohol Spectrum Disorder: Embryogenesis Under Reduced Retinoic Acid Signaling Conditions., Fainsod A, Bendelac-Kapon L, Shabtai Y., Subcell Biochem. January 1, 2020; 95 197-225.


Cdc2-like kinase 2 (Clk2) promotes early neural development in Xenopus embryos., Virgirinia RP, Jahan N, Okada M, Takebayashi-Suzuki K, Yoshida H, Nakamura M, Akao H, Yoshimoto Y, Fatchiyah F, Ueno N, Suzuki A., Dev Growth Differ. August 1, 2019; 61 (6): 365-377.                              


What are the roles of retinoids, other morphogens, and Hox genes in setting up the vertebrate body axis?, Durston AJ., Genesis. July 1, 2019; 57 (7-8): e23296.            


De novo transcription of multiple Hox cluster genes takes place simultaneously in early Xenopus tropicalis embryos., Kondo M, Matsuo M, Igarashi K, Haramoto Y, Yamamoto T, Yasuoka Y, Taira M., Biol Open. March 4, 2019; 8 (3):                                   


AKT signaling displays multifaceted functions in neural crest development., Sittewelle M, Monsoro-Burq AH., Dev Biol. December 1, 2018; 444 Suppl 1 S144-S155.


Serine Threonine Kinase Receptor-Associated Protein Deficiency Impairs Mouse Embryonic Stem Cells Lineage Commitment Through CYP26A1-Mediated Retinoic Acid Homeostasis., Jin L, Chang C, Pawlik KM, Datta A, Johnson LM, Vu T, Napoli JL, Datta PK., Stem Cells. September 1, 2018; 36 (9): 1368-1379.                      


Coordinated regulation of the dorsal-ventral and anterior-posterior patterning of Xenopus embryos by the BTB/POZ zinc finger protein Zbtb14., Takebayashi-Suzuki K, Konishi H, Miyamoto T, Nagata T, Uchida M, Suzuki A., Dev Growth Differ. April 1, 2018; 60 (3): 158-173.          


Two Tier Hox Collinearity Mediates Vertebrate Axial Patterning., Durston AJ., Front Cell Dev Biol. January 1, 2018; 6 102.        


PFKFB4 control of AKT signaling is essential for premigratory and migratory neural crest formation., Figueiredo AL, Maczkowiak F, Borday C, Pla P, Sittewelle M, Pegoraro C, Monsoro-Burq AH., Development. November 15, 2017; 144 (22): 4183-4194.                                


A molecular atlas of the developing ectoderm defines neural, neural crest, placode, and nonneural progenitor identity in vertebrates., Plouhinec JL, Medina-Ruiz S, Borday C, Bernard E, Vert JP, Eisen MB, Harland RM, Monsoro-Burq AH., PLoS Biol. October 19, 2017; 15 (10): e2004045.                                              


Vestigial-like 3 is a novel Ets1 interacting partner and regulates trigeminal nerve formation and cranial neural crest migration., Simon E, Thézé N, Fédou S, Thiébaud P, Faucheux C., Biol Open. October 15, 2017; 6 (10): 1528-1540.                                  


KDM3A-mediated demethylation of histone H3 lysine 9 facilitates the chromatin binding of Neurog2 during neurogenesis., Lin H, Zhu X, Chen G, Song L, Gao L, Khand AA, Chen Y, Lin G, Tao Q, Tao Q., Development. October 15, 2017; 144 (20): 3674-3685.                          


The RNF146 E3 ubiquitin ligase is required for the control of Wnt signaling and body pattern formation in Xenopus., Zhu X, Xing R, Tan R, Dai R, Tao Q, Tao Q., Mech Dev. October 1, 2017; 147 28-36.              


Comprehensive analyses of hox gene expression in Xenopus laevis embryos and adult tissues., Kondo M, Yamamoto T, Takahashi S, Taira M., Dev Growth Differ. August 1, 2017; 59 (6): 526-539.                                


Identification of new regulators of embryonic patterning and morphogenesis in Xenopus gastrulae by RNA sequencing., Popov IK, Kwon T, Crossman DK, Crowley MR, Wallingford JB, Chang C., Dev Biol. June 15, 2017; 426 (2): 429-441.                    


sall1 and sall4 repress pou5f3 family expression to allow neural patterning, differentiation, and morphogenesis in Xenopus laevis., Exner CRT, Kim AY, Mardjuki SM, Harland RM., Dev Biol. May 1, 2017; 425 (1): 33-43.                                    


Collinear Hox-Hox interactions are involved in patterning the vertebrate anteroposterior (A-P) axis., Zhu K, Spaink HP, Durston AJ., PLoS One. April 11, 2017; 12 (4): e0175287.                


FoxD1 protein interacts with Wnt and BMP signaling to differentially pattern mesoderm and neural tissue., Polevoy H, Malyarova A, Fonar Y, Elias S, Frank D., Int J Dev Biol. January 1, 2017; 61 (3-4-5): 293-302.              


Direct reprogramming of fibroblasts into renal tubular epithelial cells by defined transcription factors., Kaminski MM, Tosic J, Kresbach C, Engel H, Klockenbusch J, Müller AL, Pichler R, Grahammer F, Kretz O, Huber TB, Walz G, Arnold SJ, Lienkamp SS., Nat Cell Biol. December 1, 2016; 18 (12): 1269-1280.                  


Specification of anteroposterior axis by combinatorial signaling during Xenopus development., Carron C, Shi DL., Wiley Interdiscip Rev Dev Biol. January 1, 2016; 5 (2): 150-68.            


CDC174, a novel component of the exon junction complex whose mutation underlies a syndrome of hypotonia and psychomotor developmental delay., Volodarsky M, Lichtig H, Leibson T, Sadaka Y, Kadir R, Perez Y, Liani-Leibson K, Gradstein L, Shaco-Levy R, Shorer Z, Frank D, Birk OS., Hum Mol Genet. November 15, 2015; 24 (22): 6485-91.


NF2/Merlin is required for the axial pattern formation in the Xenopus laevis embryo., Zhu X, Min Z, Tan R, Tao Q, Tao Q., Mech Dev. November 1, 2015; 138 Pt 3 305-12.                


Kdm2a/b Lysine Demethylases Regulate Canonical Wnt Signaling by Modulating the Stability of Nuclear β-Catenin., Lu L, Gao Y, Zhang Z, Cao Q, Zhang X, Zou J, Cao Y., Dev Cell. June 22, 2015; 33 (6): 660-74.                                  


A time space translation hypothesis for vertebrate axial patterning., Durston AJ, Zhu K., Semin Cell Dev Biol. June 1, 2015; 42 86-93.  


Notum is required for neural and head induction via Wnt deacylation, oxidation, and inactivation., Zhang X, Cheong SM, Amado NG, Reis AH, MacDonald BT, Zebisch M, Jones EY, Abreu JG, He X., Dev Cell. March 23, 2015; 32 (6): 719-30.                                  


Isoquercitrin suppresses colon cancer cell growth in vitro by targeting the Wnt/β-catenin signaling pathway., Amado NG, Predes D, Fonseca BF, Cerqueira DM, Reis AH, Dudenhoeffer AC, Borges HL, Mendes FA, Abreu JG., J Biol Chem. December 19, 2014; 289 (51): 35456-67.                  


PV.1 induced by FGF-Xbra functions as a repressor of neurogenesis in Xenopus embryos., Yoon J, Kim JH, Lee SY, Kim S, Park JB, Lee JY, Kim J., BMB Rep. December 1, 2014; 47 (12): 673-8.        


Two different network topologies yield bistability in models of mesoderm and anterior mesendoderm specification in amphibians., Brown LE, King JR, Loose M., J Theor Biol. July 21, 2014; 353 67-77.                    


Spalt-like 4 promotes posterior neural fates via repression of pou5f3 family members in Xenopus., Young JJ, Kjolby RA, Kong NR, Monica SD, Harland RM., Development. April 1, 2014; 141 (8): 1683-93.                                                                


Molecular insights into the origin of the Hox-TALE patterning system., Hudry B, Thomas-Chollier M, Volovik Y, Duffraisse M, Dard A, Frank D, Technau U, Merabet S., Elife. March 18, 2014; 3 e01939.                                    


Vertical signalling involves transmission of Hox information from gastrula mesoderm to neurectoderm., Bardine N, Lamers G, Wacker S, Donow C, Knoechel W, Durston A., PLoS One. January 1, 2014; 9 (12): e115208.          


Role of Sp5 as an essential early regulator of neural crest specification in xenopus., Park DS, Seo JH, Hong M, Bang W, Han JK, Choi SC., Dev Dyn. December 1, 2013; 242 (12): 1382-94.                


Regulation of neurogenesis by Fgf8a requires Cdc42 signaling and a novel Cdc42 effector protein., Hulstrand AM, Houston DW., Dev Biol. October 15, 2013; 382 (2): 385-99.                              


Coco regulates dorsoventral specification of germ layers via inhibition of TGFβ signalling., Bates TJ, Vonica A, Heasman J, Brivanlou AH, Bell E., Development. October 1, 2013; 140 (20): 4177-81.              


β-Adrenergic signaling promotes posteriorization in Xenopus early development., Mori S, Moriyama Y, Yoshikawa K, Furukawa T, Kuroda H., Dev Growth Differ. April 1, 2013; 55 (3): 350-8.            


Regulation of primitive hematopoiesis by class I histone deacetylases., Shah RR, Koniski A, Shinde M, Blythe SA, Fass DM, Haggarty SJ, Palis J, Klein PS., Dev Dyn. February 1, 2013; 242 (2): 108-21.              


Time space translation: a hox mechanism for vertebrate a-p patterning., Durston A, Wacker S, Bardine N, Jansen H., Curr Genomics. June 1, 2012; 13 (4): 300-7.          


Plasma membrane cholesterol depletion disrupts prechordal plate and affects early forebrain patterning., Reis AH, Almeida-Coburn KL, Louza MP, Cerqueira DM, Aguiar DP, Silva-Cardoso L, Mendes FA, Andrade LR, Einicker-Lamas M, Atella GC, Brito JM, Abreu JG., Dev Biol. May 15, 2012; 365 (2): 350-62.                    


The cytoplasmic tyrosine kinase Arg regulates gastrulation via control of actin organization., Bonacci G, Fletcher J, Devani M, Dwivedi H, Keller R, Chang C., Dev Biol. April 1, 2012; 364 (1): 42-55.                                        


A hindbrain-repressive Wnt3a/Meis3/Tsh1 circuit promotes neuronal differentiation and coordinates tissue maturation., Elkouby YM, Polevoy H, Gutkovich YE, Michaelov A, Frank D., Development. April 1, 2012; 139 (8): 1487-97.                    


Xenopus Zic3 controls notochord and organizer development through suppression of the Wnt/β-catenin signaling pathway., Fujimi TJ, Hatayama M, Aruga J., Dev Biol. January 15, 2012; 361 (2): 220-31.                          


Maternal xNorrin, a canonical Wnt signaling agonist and TGF-β antagonist, controls early neuroectoderm specification in Xenopus., Xu S, Cheng F, Liang J, Wu W, Zhang J., PLoS Biol. January 1, 2012; 10 (3): e1001286.                                    


Ventx factors function as Nanog-like guardians of developmental potential in Xenopus., Scerbo P, Girardot F, Vivien C, Markov GV, Luxardi G, Demeneix B, Kodjabachian L, Coen L., PLoS One. January 1, 2012; 7 (5): e36855.              


A homolog of Subtilisin-like Proprotein Convertase 7 is essential to anterior neural development in Xenopus., Senturker S, Thomas JT, Mateshaytis J, Moos M., PLoS One. January 1, 2012; 7 (6): e39380.                

???pagination.result.page??? 1 2 3 4 ???pagination.result.next???