Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (41) GO Terms (8) Nucleotides (464) Proteins (58) Interactants (341) Wiki
XB-GENEPAGE-965561

Papers associated with dnmt1



???displayGene.coCitedPapers???
4 ???displayGene.morpholinoPapers???

???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Age-associated DNA methylation changes in Xenopus frogs., Morselli M, Bennett R, Shaidani NI, Horb M, Peshkin L, Pellegrini M., Epigenetics. December 1, 2023; 18 (1): 2201517.                    


The termination of UHRF1-dependent PAF15 ubiquitin signaling is regulated by USP7 and ATAD5., Miyashita R, Nishiyama A, Qin W, Chiba Y, Kori S, Kato N, Konishi C, Kumamoto S, Kozuka-Hata H, Oyama M, Kawasoe Y, Tsurimoto T, Takahashi TS, Leonhardt H, Arita K, Nakanishi M., Elife. February 3, 2023; 12                                   


Transcriptome and Methylome Analysis Reveal Complex Cross-Talks between Thyroid Hormone and Glucocorticoid Signaling at Xenopus Metamorphosis., Buisine N, Grimaldi A, Jonchere V, Rigolet M, Blugeon C, Hamroune J, Sachs LM., Cells. September 9, 2021; 10 (9):               


Temporal transcriptomic profiling reveals dynamic changes in gene expression of Xenopus animal cap upon activin treatment., Satou-Kobayashi Y, Kim JD, Fukamizu A, Asashima M., Sci Rep. July 15, 2021; 11 (1): 14537.          


Recent evolution of a TET-controlled and DPPA3/STELLA-driven pathway of passive DNA demethylation in mammals., Mulholland CB, Nishiyama A, Ryan J, Nakamura R, Yiğit M, Glück IM, Trummer C, Qin W, Bartoschek MD, Traube FR, Parsa E, Ugur E, Modic M, Acharya A, Stolz P, Ziegenhain C, Wierer M, Enard W, Carell T, Lamb DC, Takeda H, Nakanishi M, Bultmann S, Leonhardt H., Nat Commun. November 24, 2020; 11 (1): 5972.                


Two distinct modes of DNMT1 recruitment ensure stable maintenance DNA methylation., Nishiyama A, Mulholland CB, Bultmann S, Kori S, Endo A, Saeki Y, Qin W, Trummer C, Chiba Y, Yokoyama H, Kumamoto S, Kawakami T, Hojo H, Nagae G, Aburatani H, Tanaka K, Arita K, Leonhardt H, Nakanishi M., Nat Commun. March 6, 2020; 11 (1): 1222.            


Structure of the Dnmt1 Reader Module Complexed with a Unique Two-Mono-Ubiquitin Mark on Histone H3 Reveals the Basis for DNA Methylation Maintenance., Ishiyama S, Nishiyama A, Saeki Y, Moritsugu K, Morimoto D, Yamaguchi L, Arai N, Matsumura R, Kawakami T, Mishima Y, Hojo H, Shimamura S, Ishikawa F, Tajima S, Tanaka K, Ariyoshi M, Shirakawa M, Ikeguchi M, Kidera A, Suetake I, Arita K, Nakanishi M., Mol Cell. October 19, 2017; 68 (2): 350-360.e7.            


Epigenetic regulation of left-right asymmetry by DNA methylation., Wang L, Liu Z, Lin H, Ma D, Tao Q, Tao Q, Liu F., EMBO J. October 16, 2017; 36 (20): 2987-2997.


Similarity in gene-regulatory networks suggests that cancer cells share characteristics of embryonic neural cells., Zhang Z, Lei A, Xu L, Chen L, Chen Y, Chen Y, Zhang X, Gao Y, Yang X, Zhang M, Cao Y, Cao Y., J Biol Chem. August 4, 2017; 292 (31): 12842-12859.        


Usp7-dependent histone H3 deubiquitylation regulates maintenance of DNA methylation., Yamaguchi L, Nishiyama A, Misaki T, Johmura Y, Ueda J, Arita K, Nagao K, Obuse C, Nakanishi M., Sci Rep. March 3, 2017; 7 (1): 55.              


Gene Resistance to Transcriptional Reprogramming following Nuclear Transfer Is Directly Mediated by Multiple Chromatin-Repressive Pathways., Jullien J, Vodnala M, Pasque V, Oikawa M, Miyamoto K, Allen G, David SA, Brochard V, Wang S, Bradshaw C, Koseki H, Sartorelli V, Beaujean N, Gurdon J., Mol Cell. March 2, 2017; 65 (5): 873-884.e8.                        


Developmental and Thyroid Hormone Regulation of the DNA Methyltransferase 3a Gene in Xenopus Tadpoles., Kyono Y, Sachs LM, Bilesimo P, Wen L, Denver RJ., Endocrinology. December 1, 2016; 157 (12): 4961-4972.


A phospho-dependent mechanism involving NCoR and KMT2D controls a permissive chromatin state at Notch target genes., Oswald F, Rodriguez P, Giaimo BD, Antonello ZA, Mira L, Mittler G, Thiel VN, Collins KJ, Tabaja N, Cizelsky W, Rothe M, Kühl SJ, Kühl SJ, Kühl M, Ferrante F, Hein K, Kovall RA, Dominguez M, Borggrefe T., Nucleic Acids Res. June 2, 2016; 44 (10): 4703-20.                              


The replication foci targeting sequence (RFTS) of DNMT1 functions as a potent histone H3 binding domain regulated by autoinhibition., Misaki T, Yamaguchi L, Sun J, Orii M, Nishiyama A, Nakanishi M., Biochem Biophys Res Commun. February 12, 2016; 470 (3): 741-747.


Regulation of maintenance DNA methylation via histone ubiquitylation., Nishiyama A, Yamaguchi L, Nakanishi M., J Biochem. January 1, 2016; 159 (1): 9-15.


Arsenic(+3) and DNA methyltransferases, and arsenic speciation in tadpole and frog life stages of western clawed frogs (Silurana tropicalis) exposed to arsenate., Koch I, Zhang J, Button M, Gibson LA, Caumette G, Langlois VS, Reimer KJ, Cullen WR., Metallomics. August 1, 2015; 7 (8): 1274-84.


Lsh Is Essential for Maintaining Global DNA Methylation Levels in Amphibia and Fish and Interacts Directly with Dnmt1., Dunican DS, Pennings S, Meehan RR., Biomed Res Int. January 1, 2015; 2015 740637.                        


New insights into the maternal to zygotic transition., Langley AR, Smith JC, Stemple DL, Harvey SA., Development. October 1, 2014; 141 (20): 3834-41.


Efficient translation of Dnmt1 requires cytoplasmic polyadenylation and Musashi binding elements., Rutledge CE, Lau HT, Mangan H, Hardy LL, Sunnotel O, Guo F, MacNicol AM, Walsh CP, Lees-Murdock DJ., PLoS One. February 19, 2014; 9 (2): e88385.        


Uhrf1-dependent H3K23 ubiquitylation couples maintenance DNA methylation and replication., Nishiyama A, Yamaguchi L, Sharif J, Johmura Y, Kawamura T, Nakanishi K, Shimamura S, Arita K, Kodama T, Ishikawa F, Koseki H, Nakanishi M., Nature. October 10, 2013; 502 (7470): 249-53.  


Depletion of Uhrf1 inhibits chromosomal DNA replication in Xenopus egg extracts., Taylor EM, Bonsu NM, Price RJ, Lindsay HD., Nucleic Acids Res. September 1, 2013; 41 (16): 7725-37.              


Studying epigenetic DNA modifications in undergraduate laboratories using complementary bioinformatic and molecular approaches., Militello KT., Biochem Mol Biol Educ. January 1, 2013; 41 (5): 334-40.


Xtr, a plural tudor domain-containing protein, coexists with FRGY2 both in cytoplasmic mRNP particle and germ plasm in Xenopus embryo: its possible role in translational regulation of maternal mRNAs., Golam Mostafa M, Sugimoto T, Hiyoshi M, Kawasaki H, Kubo H, Matsumoto K, Abe S, Takamune K., Dev Growth Differ. August 1, 2009; 51 (6): 595-605.          


MBD4 and MLH1 are required for apoptotic induction in xDNMT1-depleted embryos., Ruzov A, Shorning B, Mortusewicz O, Dunican DS, Leonhardt H, Meehan RR., Development. July 1, 2009; 136 (13): 2277-86.


A microarray screen for direct targets of Zic1 identifies an aquaporin gene, aqp-3b, expressed in the neural folds., Cornish EJ, Hassan SM, Martin JD, Li S, Merzdorf CS., Dev Dyn. May 1, 2009; 238 (5): 1179-94.                


xDnmt1 regulates transcriptional silencing in pre-MBT Xenopus embryos independently of its catalytic function., Dunican DS, Ruzov A, Hackett JA, Meehan RR., Development. April 1, 2008; 135 (7): 1295-302.


Alternative splicing and expression analysis of bovine DNA methyltransferase 1., Russell DF, Betts DH., Dev Dyn. April 1, 2008; 237 (4): 1051-9.


Xnrs and activin regulate distinct genes during Xenopus development: activin regulates cell division., Ramis JM, Collart C, Smith JC., PLoS One. February 14, 2007; 2 (2): e213.      


A method to detect DNA methyltransferase I gene transcription in vitro in aging systems., Berletch JB, Andrews LG, Tollefsbol TO., Methods Mol Biol. January 1, 2007; 371 73-80.


De novo methylation of nucleosomal DNA by the mammalian Dnmt1 and Dnmt3A DNA methyltransferases., Gowher H, Stockdale CJ, Goyal R, Ferreira H, Owen-Hughes T, Jeltsch A., Biochemistry. July 26, 2005; 44 (29): 9899-904.


Kaiso is a genome-wide repressor of transcription that is essential for amphibian development., Ruzov A, Dunican DS, Prokhortchouk A, Pennings S, Stancheva I, Prokhortchouk E, Meehan RR., Development. December 1, 2004; 131 (24): 6185-94.      


DNMT3L stimulates the DNA methylation activity of Dnmt3a and Dnmt3b through a direct interaction., Suetake I, Shinozaki F, Miyagawa J, Takeshima H, Tajima S., J Biol Chem. June 25, 2004; 279 (26): 27816-23.


Isolation and characterization of a novel DNA methyltransferase complex linking DNMT3B with components of the mitotic chromosome condensation machinery., Geiman TM, Sankpal UT, Robertson AK, Chen Y, Mazumdar M, Heale JT, Schmiesing JA, Kim W, Yokomori K, Zhao Y, Robertson KD., Nucleic Acids Res. May 17, 2004; 32 (9): 2716-29.


A mutant form of MeCP2 protein associated with human Rett syndrome cannot be displaced from methylated DNA by notch in Xenopus embryos., Stancheva I, Collins AL, Van den Veyver IB, Zoghbi H, Meehan RR., Mol Cell. August 1, 2003; 12 (2): 425-35.                          


Monoclonal antibody against dnmt1 arrests the cell division of xenopus early-stage embryos., Hashimoto H, Suetake I, Tajima S., Exp Cell Res. June 10, 2003; 286 (2): 252-62.


From intestine to muscle: nuclear reprogramming through defective cloned embryos., Byrne JA, Simonsson S, Gurdon JB., Proc Natl Acad Sci U S A. April 30, 2002; 99 (9): 6059-63.            


DNA methylation at promoter regions regulates the timing of gene activation in Xenopus laevis embryos., Stancheva I, El-Maarri O, Walter J, Niveleau A, Meehan RR., Dev Biol. March 1, 2002; 243 (1): 155-65.        


Xenopus eggs express an identical DNA methyltransferase, Dnmt1, to somatic cells., Shi L, Suetake I, Kawakami T, Aimoto S, Tajima S., J Biochem. September 1, 2001; 130 (3): 359-66.


A conserved 3'-untranslated element mediates growth regulation of DNA methyltransferase 1 and inhibits its transforming activity., Detich N, Ramchandani S, Szyf M., J Biol Chem. July 6, 2001; 276 (27): 24881-90.


Loss of the maintenance methyltransferase, xDnmt1, induces apoptosis in Xenopus embryos., Stancheva I, Hensey C, Meehan RR., EMBO J. April 17, 2001; 20 (8): 1963-73.


Transient depletion of xDnmt1 leads to premature gene activation in Xenopus embryos., Stancheva I, Meehan RR., Genes Dev. February 1, 2000; 14 (3): 313-27.                    

???pagination.result.page??? 1