Results 1 - 25 of 25 results
Dehydration stress alters the mitogen-activated-protein kinase signaling and chaperone stress response in Xenopus laevis. , Wu CW , Tessier SN, Storey KB ., Comp Biochem Physiol B Biochem Mol Biol. August 1, 2020; 246-247 110461.
Recovery of the Xenopus laevis heart from ROS-induced stress utilizes conserved pathways of cardiac regeneration. , Jewhurst K, McLaughlin KA ., Dev Growth Differ. April 1, 2019; 61 (3): 212-227.
The regulation of heat shock proteins in response to dehydration in Xenopus laevis. , Luu BE, Wijenayake S, Malik AI , Storey KB ., Cell Stress Chaperones. January 1, 2018; 23 (1): 45-53.
Cytosolic calcium transients are a determinant of contraction-induced HSP72 transcription in single skeletal muscle fibers. , Stary CM, Hogan MC., J Appl Physiol (1985). January 1, 2016; 120 (10): 1260-6.
An in vivo screen to identify candidate neurogenic genes in the developing Xenopus visual system. , Bestman JE , Huang LC, Lee-Osbourne J, Cheung P, Cline HT ., Dev Biol. December 15, 2015; 408 (2): 269-91.
Early, nonciliary role for microtubule proteins in left- right patterning is conserved across kingdoms. , Lobikin M, Wang G, Xu J, Hsieh YW, Chuang CF, Lemire JM , Levin M ., Proc Natl Acad Sci U S A. July 31, 2012; 109 (31): 12586-91.
Elevation in heat shock protein 72 mRNA following contractions in isolated single skeletal muscle fibers. , Stary CM, Walsh BJ, Knapp AE, Brafman D, Hogan MC., Am J Physiol Regul Integr Comp Physiol. August 1, 2008; 295 (2): R642-8.
Identification of genes associated with regenerative success of Xenopus laevis hindlimbs. , Pearl EJ , Barker D , Day RC, Beck CW ., BMC Dev Biol. July 28, 2008; 8 66.
Differential subcellular sequestration of proapoptotic and antiapoptotic proteins and colocalization of Bcl-x(L) with the germ plasm, in Xenopus laevis oocytes. , Kloc M , Shirato Y, Bilinski S , Browder LW , Johnston J ., Genesis. August 1, 2007; 45 (8): 523-31.
Xenopus cDNA microarray identification of genes with endodermal organ expression. , Park EC , Hayata T , Cho KW , Han JK ., Dev Dyn. June 1, 2007; 236 (6): 1633-49.
Genetic basis of phenotypic plasticity for predator-induced morphological defenses in anuran tadpole, Rana pirica, using cDNA subtraction and microarray analysis. , Mori T , Hiraka I, Kurata Y, Kawachi H, Kishida O, Nishimura K., Biochem Biophys Res Commun. May 20, 2005; 330 (4): 1138-45.
Events upstream of mitochondrial protein import limit the oxidative capacity of fibroblasts in multiple mitochondrial disease. , Rungi AA, Primeau A, Nunes Christie L, Gordon JW, Robinson BH, Hood DA., Biochim Biophys Acta. March 16, 2002; 1586 (2): 146-54.
Specific association of a set of molecular chaperones including HSP90 and Cdc37 with MOK, a member of the mitogen-activated protein kinase superfamily. , Miyata Y, Ikawa Y, Shibuya M, Nishida E ., J Biol Chem. June 15, 2001; 276 (24): 21841-8.
Origin of gene overlap: the case of TCP1 and ACAT2. , Shintani S, O'hUigin C, Toyosawa S, Michalová V, Klein J., Genetics. June 1, 1999; 152 (2): 743-54.
Novel AE1 mutations in recessive distal renal tubular acidosis. Loss-of-function is rescued by glycophorin A. , Tanphaichitr VS, Sumboonnanonda A, Ideguchi H, Shayakul C, Brugnara C, Takao M, Veerakul G, Alper SL., J Clin Invest. December 15, 1998; 102 (12): 2173-9.
The human P2X4 receptor gene is alternatively spliced. , Dhulipala PD, Wang YX, Kotlikoff MI., Gene. January 30, 1998; 207 (2): 259-66.
Chaperonin-mediated folding in the eukaryotic cytosol proceeds through rounds of release of native and nonnative forms. , Farr GW, Scharl EC, Schumacher RJ, Sondek S, Horwich AL., Cell. June 13, 1997; 89 (6): 927-37.
Molecular characterisation of the Xenopus laevis chaperonin gene Cctg. , Walkley NA, Page RA, Malik AN., Biochim Biophys Acta. November 11, 1996; 1309 (1-2): 25-30.
Analysis of chaperonin-containing TCP-1 subunits in the human keratinocyte two-dimensional protein database: further characterisation of antibodies to individual subunits. , Hynes G, Celis JE, Lewis VA, Carne A, U S, Lauridsen JB, Willison KR., Electrophoresis. November 1, 1996; 17 (11): 1720-7.
Release of both native and non-native proteins from a cis-only GroEL ternary complex. , Burston SG, Weissman JS, Farr GW, Fenton WA, Horwich AL., Nature. September 5, 1996; 383 (6595): 96-9.
Isolation and characterization of a cDNA encoding a Xenopus 70-kDa heat shock cognate protein, Hsc70.I. , Ali A, Salter-Cid L, Flajnik MF , Heikkila JJ ., Comp Biochem Physiol B Biochem Mol Biol. April 1, 1996; 113 (4): 681-7.
Cloning and expression of Xenopus CCT gamma, a chaperonin subunit developmentally regulated in neural-derived and myogenic lineages. , Dunn MK, Mercola M ., Dev Dyn. April 1, 1996; 205 (4): 387-94.
Chaperonins dependent increase of Cu,Zn superoxide dismutase production in Escherichia coli. , Battistoni A, Carri MT, Steinkühler C, Rotilio G., FEBS Lett. May 3, 1993; 322 (1): 6-9.
Thyroid hormone-induced gene expression changes in the developing frog limb. , Buckbinder L, Brown DD ., J Biol Chem. December 25, 1992; 267 (36): 25786-91.
A highly evolutionarily conserved mitochondrial protein is structurally related to the protein encoded by the Escherichia coli groEL gene. , McMullin TW, Hallberg RL., Mol Cell Biol. January 1, 1988; 8 (1): 371-80.