Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (31) GO Terms (4) Nucleotides (136) Proteins (34) Interactants (265) Wiki
XB--988577

Papers associated with tyr



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

referenced by:


Generation of albino Xenopus tropicalis using zinc-finger nucleases., Nakajima K, Nakajima T, Takase M, Yaoita Y., Dev Growth Differ. December 1, 2012; 54 (9): 777-84.          


Repeating pattern of non-RVD variations in DNA-binding modules enhances TALEN activity., Sakuma T, Ochiai H, Kaneko T, Mashimo T, Tokumasu D, Sakane Y, Suzuki K, Miyamoto T, Sakamoto N, Matsuura S, Yamamoto T., Sci Rep. November 29, 2013; 3 3379.                    


Targeted mutagenesis of multiple and paralogous genes in Xenopus laevis using two pairs of transcription activator-like effector nucleases., Sakane Y, Sakuma T, Kashiwagi K, Kashiwagi A, Yamamoto T, Suzuki KT., Dev Growth Differ. January 1, 2014; 56 (1): 108-14.      


Efficient RNA/Cas9-mediated genome editing in Xenopus tropicalis., Guo X, Zhang T, Hu Z, Zhang Y, Zhang Y, Shi Z, Wang Q, Cui Y, Wang F, Zhao H, Chen Y, Chen Y., Development. February 1, 2014; 141 (3): 707-14.              


Targeted gene disruption in Xenopus laevis using CRISPR/Cas9., Wang F, Shi Z, Cui Y, Guo X, Shi YB, Shi YB, Chen Y, Chen Y., Cell Biosci. January 1, 2015; 5 15.            


Highly efficient gene knockout by injection of TALEN mRNAs into oocytes and host transfer in Xenopus laevis., Nakajima K, Yaoita Y., Biol Open. January 16, 2015; 4 (2): 180-5.        


Development of a new approach for targeted gene editing in primordial germ cells using TALENs in Xenopus., Nakajima K, Yaoita Y., Biol Open. February 6, 2015; 4 (3): 259-66.          


TALEN-mediated apc mutation in Xenopus tropicalis phenocopies familial adenomatous polyposis., Van Nieuwenhuysen T, Naert T, Tran HT, Van Imschoot G, Geurs S, Sanders E, Creytens D, Van Roy F, Vleminckx K, Vleminckx K., Oncoscience. May 19, 2015; 2 (5): 555-66.              


Heritable CRISPR/Cas9-mediated targeted integration in Xenopus tropicalis., Shi Z, Wang F, Cui Y, Liu Z, Guo X, Zhang Y, Deng Y, Zhao H, Chen Y, Chen Y., FASEB J. December 1, 2015; 29 (12): 4914-23.


CRISPR/Cas9: An inexpensive, efficient loss of function tool to screen human disease genes in Xenopus., Bhattacharya D, Marfo CA, Li D, Lane M, Khokha MK., Dev Biol. December 15, 2015; 408 (2): 196-204.            


Efficient genome editing of genes involved in neural crest development using the CRISPR/Cas9 system in Xenopus embryos., Liu Z, Cheng TT, Shi Z, Liu Z, Lei Y, Wang C, Shi W, Chen X, Qi X, Cai D, Feng B, Deng Y, Chen Y, Zhao H., Cell Biosci. January 21, 2016; 6 22.          


Rapid and efficient analysis of gene function using CRISPR-Cas9 in Xenopus tropicalis founders., Shigeta M, Sakane Y, Iida M, Suzuki M, Kashiwagi K, Kashiwagi A, Fujii S, Yamamoto T, Suzuki KT., Genes Cells. July 1, 2016; 21 (7): 755-71.                


Leapfrogging: primordial germ cell transplantation permits recovery of CRISPR/Cas9-induced mutations in essential genes., Blitz IL, Fish MB, Cho KW., Development. August 1, 2016; 143 (15): 2868-75.        


Transcriptomic and macroevolutionary evidence for phenotypic uncoupling between frog life history phases., Wollenberg Valero KC, Garcia-Porta J, Rodríguez A, Arias M, Shah A, Randrianiaina RD, Brown JL, Glaw F, Amat F, Künzel S, Metzler D, Isokpehi RD, Vences M., Nat Commun. May 15, 2017; 8 15213.      


no privacy, a Xenopus tropicalis mutant, is a model of human Hermansky-Pudlak Syndrome and allows visualization of internal organogenesis during tadpole development., Nakayama T, Nakajima K, Cox A, Fisher M, Fisher M, Howell M, Fish MB, Yaoita Y, Grainger RM., Dev Biol. June 15, 2017; 426 (2): 472-486.                          


AKT signaling displays multifaceted functions in neural crest development., Sittewelle M, Monsoro-Burq AH., Dev Biol. December 1, 2018; 444 Suppl 1 S144-S155.


DNp73-induced degradation of tyrosinase links depigmentation with EMT-driven melanoma progression., Fürst K, Steder M, Logotheti S, Angerilli A, Spitschak A, Marquardt S, Schumacher T, Engelmann D, Herchenröder O, Rupp RAW, Pützer BM., Cancer Lett. February 1, 2019; 442 299-309.


The myeloid lineage is required for the emergence of a regeneration-permissive environment following Xenopus tail amputation., Aztekin C, Hiscock TW, Butler R, De Jesús Andino F, Robert J, Gurdon JB, Jullien J., Development. February 5, 2020; 147 (3):                                     


Simple embryo injection of long single-stranded donor templates with the CRISPR/Cas9 system leads to homology-directed repair in Xenopus tropicalis and Xenopus laevis., Nakayama T, Grainger RM, Cha SW., Genesis. June 1, 2020; 58 (6): e23366.                


A simple and practical workflow for genotyping of CRISPR-Cas9-based knockout phenotypes using multiplexed amplicon sequencing., Iida M, Suzuki M, Suzuki M, Sakane Y, Nishide H, Uchiyama I, Yamamoto T, Suzuki KT, Fujii S., Genes Cells. July 1, 2020; 25 (7): 498-509.                    


Defective heart chamber growth and myofibrillogenesis after knockout of adprhl1 gene function by targeted disruption of the ancestral catalytic active site., Smith SJ, Towers N, Demetriou K, Mohun TJ., PLoS One. July 29, 2020; 15 (7): e0235433.                                            


Low-temperature incubation improves both knock-in and knock-down efficiencies by the CRISPR/Cas9 system in Xenopus laevis as revealed by quantitative analysis., Kato S, Fukazawa T, Kubo T, Kubo T., Biochem Biophys Res Commun. March 5, 2021; 543 50-55.          


4-Octylphenol induces developmental abnormalities and interferes the differentiation of neural crest cells in Xenopus laevis embryos., Xu Y, Jang JH, Gye MC., Environ Pollut. April 1, 2021; 274 116560.  


Generation of no-yellow-pigment Xenopus tropicalis by slc2a7 gene knockout., Nakajima K, Shimamura M, Furuno N., Dev Dyn. October 1, 2021; 250 (10): 1420-1431.          


Deep learning is widely applicable to phenotyping embryonic development and disease., Naert T, Çiçek Ö, Ogar P, Bürgi M, Shaidani NI, Kaminski MM, Xu Y, Grand K, Vujanovic M, Prata D, Hildebrandt F, Brox T, Ronneberger O, Voigt FF, Helmchen F, Loffing J, Horb ME, Willsey HR, Lienkamp SS., Development. November 1, 2021; 148 (21):                                                                 


Optimization of CRISPR/Cas9-mediated gene disruption in Xenopus laevis using a phenotypic image analysis technique., Tanouchi M, Igawa T, Suzuki N, Suzuki M, Hossain N, Ochi H, Ogino H., Dev Growth Differ. May 1, 2022; 64 (4): 219-225.                


Expanding the CRISPR/Cas genome-editing scope in Xenopus tropicalis., Shi Z, Jiang H, Liu G, Shi S, Zhang X, Chen Y., Cell Biosci. July 8, 2022; 12 (1): 104.                                


Identification and validation of candidate risk genes in endocytic vesicular trafficking associated with esophageal atresia and tracheoesophageal fistulas., Zhong G, Ahimaz P, Edwards NA, Hagen JJ, Faure C, Lu Q, Kingma P, Middlesworth W, Khlevner J, El Fiky M, Schindel D, Fialkowski E, Kashyap A, Forlenza S, Kenny AP, Zorn AM, Shen Y, Chung WK., HGG Adv. July 14, 2022; 3 (3): 100107.        


Generation of translucent Xenopus tropicalis through triple knockout of pigmentation genes., Nakajima K, Tazawa I, Furuno N., Dev Growth Differ. December 1, 2023; 65 (9): 591-598.            


Revealing mitf functions and visualizing allografted tumor metastasis in colorless and immunodeficient Xenopus tropicalis., Ran R, Li L, Xu T, Huang J, He H, Chen Y, Chen Y., Commun Biol. March 5, 2024; 7 (1): 275.                                

???pagination.result.page??? 1