Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (52) GO Terms (7) Nucleotides (55) Proteins (39) Interactants (234) Wiki
XB-GENEPAGE-992304

Papers associated with th



???displayGene.coCitedPapers???
3 ???displayGene.morpholinoPapers???

???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

A detergent-activated tyrosinase from Xenopus laevis. I. Purification and partial characterization., Wittenberg C, Triplett EL., J Biol Chem. October 15, 1985; 260 (23): 12535-41.


A single RNA species injected in Xenopus oocyte directs the synthesis of active tyrosine hydroxylase., Horellou P, Guibert B, Leviel V, Mallet J., FEBS Lett. September 1, 1986; 205 (1): 6-10.


Multiple human tyrosine hydroxylase enzymes, generated through alternative splicing, have different specific activities in Xenopus oocytes., Horellou P, Le Bourdellès B, Clot-Humbert J, Guibert B, Leviel V, Mallet J., J Neurochem. August 1, 1988; 51 (2): 652-5.


GABA and tyrosine hydroxylase immunocytochemistry reveal different patterns of colocalization in retinal neurons of various vertebrates., Wulle I, Wagner HJ., J Comp Neurol. June 1, 1990; 296 (1): 173-8.


Morphology and retinal distribution of tyrosine hydroxylase-like immunoreactive amacrine cells in the retina of developing Xenopus laevis., Zhu BS, Straznicky C., Anat Embryol (Berl). January 1, 1991; 184 (1): 33-45.


Development of the Xenopus laevis hatching gland and its relationship to surface ectoderm patterning., Drysdale TA, Elinson RP., Development. February 1, 1991; 111 (2): 469-78.            


Phosphorylation of human recombinant tyrosine hydroxylase isoforms 1 and 2: an additional phosphorylated residue in isoform 2, generated through alternative splicing., Le Bourdellès B, Horellou P, Le Caer JP, Denèfle P, Latta M, Haavik J, Guibert B, Mayaux JF, Mallet J., J Biol Chem. September 15, 1991; 266 (26): 17124-30.


Does lineage determine the dopamine phenotype in the tadpole hypothalamus?: A quantitative analysis., Huang S, Moody SA., J Neurosci. April 1, 1992; 12 (4): 1351-62.                


Distribution of tyrosine hydroxylase and dopamine immunoreactivities in the brain of the South African clawed frog Xenopus laevis., González A, Tuinhof R, Smeets WJ., Anat Embryol (Berl). February 1, 1993; 187 (2): 193-201.


A nonrandom interneuronal pattern in the developing frog spinal cord., Heathcote RD, Chen A., J Comp Neurol. February 15, 1993; 328 (3): 437-48.


Effects of localized application of retinoic acid on Xenopus laevis development., Drysdale TA, Crawford MJ., Dev Biol. April 1, 1994; 162 (2): 394-401.            


Morphogenesis of catecholaminergic interneurons in the frog spinal cord., Heathcote RD, Chen A., J Comp Neurol. April 1, 1994; 342 (1): 57-68.


Ontogeny of catecholamine systems in the central nervous system of anuran amphibians: an immunohistochemical study with antibodies against tyrosine hydroxylase and dopamine., González A, Marín O, Tuinhof R, Smeets WJ., J Comp Neurol. August 1, 1994; 346 (1): 63-79.


Development of catecholamine systems in the central nervous system of the newt Pleurodeles waltlii as revealed by tyrosine hydroxylase immunohistochemistry., González A, Marín O, Smeets WJ., J Comp Neurol. September 11, 1995; 360 (1): 33-48.


Brain-derived neurotrophic factor/neurotrophin-4 receptor TrkB is localized on ganglion cells and dopaminergic amacrine cells in the vertebrate retina., Cellerino A, Kohler K., J Comp Neurol. September 15, 1997; 386 (1): 149-60.


Stage-dependent changes in adrenal steroids and catecholamines during development in Xenopus laevis., Kloas W, Reinecke M, Hanke W., Gen Comp Endocrinol. December 1, 1997; 108 (3): 416-26.          


Basal ganglia organization in amphibians: chemoarchitecture., Marín O, Smeets WJ, González A., J Comp Neurol. March 16, 1998; 392 (3): 285-312.                      


Identification of suprachiasmatic melanotrope-inhibiting neurons in Xenopus laevis: a confocal laser-scanning microscopy study., Ubink R, Tuinhof R, Roubos EW., J Comp Neurol. July 20, 1998; 397 (1): 60-8.          


Reduction in cell size during development of the spinal cord., Chen A, Ekman JM, Heathcote RD., J Comp Neurol. July 12, 1999; 409 (4): 592-602.  


Tyrosine hydroxylase-immunoreactive interneurons in the olfactory bulb of the frogs Rana pipiens and Xenopus laevis., Boyd JD, Delaney KR., J Comp Neurol. December 2, 2002; 454 (1): 42-57.  


Differential distribution of Mel(1a) and Mel(1c) melatonin receptors in Xenopus laevis retina., Wiechmann AF., Exp Eye Res. January 1, 2003; 76 (1): 99-106.          


Localization of Mel1b melatonin receptor-like immunoreactivity in ocular tissues of Xenopus laevis., Wiechmann AF, Udin SB, Summers Rada JA., Exp Eye Res. October 1, 2004; 79 (4): 585-94.                  


Central amygdala in anuran amphibians: neurochemical organization and connectivity., Moreno N, González A., J Comp Neurol. August 15, 2005; 489 (1): 69-91.


Colocalization of nitric oxide synthase and monoamines in neurons of the amphibian brain., López JM, Moreno N, Morona R, Muñoz M, González A., Brain Res Bull. September 15, 2005; 66 (4-6): 555-9.


Timing the generation of distinct retinal cells by homeobox proteins., Decembrini S, Andreazzoli M, Vignali R, Barsacchi G, Cremisi F., PLoS Biol. September 1, 2006; 4 (9): e272.                          


Ptf1a triggers GABAergic neuronal cell fates in the retina., Dullin JP, Locker M, Robach M, Henningfeld KA, Parain K, Afelik S, Pieler T, Perron M., BMC Dev Biol. May 31, 2007; 7 110.              


Anuran olfactory bulb organization: embryology, neurochemistry and hodology., Moreno N, Morona R, López JM, Dominguez L, Muñoz M, González A., Brain Res Bull. March 18, 2008; 75 (2-4): 241-5.


Islet1 as a marker of subdivisions and cell types in the developing forebrain of Xenopus., Moreno N, Domínguez L, Rétaux S, González A., Neuroscience. July 17, 2008; 154 (4): 1423-39.


Simvastatin inhibits catecholamine secretion and synthesis induced by acetylcholine via blocking Na+ and Ca2+ influx in bovine adrenal medullary cells., Matsuda T, Toyohira Y, Ueno S, Tsutsui M, Yanagihara N., J Pharmacol Exp Ther. October 1, 2008; 327 (1): 130-6.


Spatio-temporal expression of Pax6 in Xenopus forebrain., Moreno N, Rétaux S, González A., Brain Res. November 6, 2008; 1239 92-9.      


Mediolateral and rostrocaudal topographic organization of the sympathetic preganglionic cell pool in the spinal cord of Xenopus laevis., Nakano M, Goris RC, Atobe Y, Kadota T, Funakoshi K., J Comp Neurol. March 20, 2009; 513 (3): 292-314.                      


Generation of functional eyes from pluripotent cells., Viczian AS, Solessio EC, Lyou Y, Zuber ME., PLoS Biol. August 1, 2009; 7 (8): e1000174.                                


Immunohistochemical localization of calbindin-D28k and calretinin in the brainstem of anuran and urodele amphibians., Morona R, González A., J Comp Neurol. August 10, 2009; 515 (5): 503-37.


Identification of the gene encoding alkylglycerol monooxygenase defines a third class of tetrahydrobiopterin-dependent enzymes., Watschinger K, Keller MA, Golderer G, Hermann M, Maglione M, Sarg B, Lindner HH, Hermetter A, Werner-Felmayer G, Konrat R, Hulo N, Werner ER., Proc Natl Acad Sci U S A. August 3, 2010; 107 (31): 13672-7.


Sonic hedgehog expression during Xenopus laevis forebrain development., Domínguez L, González A, Moreno N., Dev Biol. August 6, 2010; 1347 19-32.            


Immunohistochemical localization of DARPP-32 in the brain and spinal cord of anuran amphibians and its relation with the catecholaminergic system., López JM, Morona R, González A., J Chem Neuroanat. December 1, 2010; 40 (4): 325-38.


Contexts for dopamine specification by calcium spike activity in the CNS., Velázquez-Ulloa NA, Spitzer NC, Dulcis D., J Neurosci. January 5, 2011; 31 (1): 78-88.                    


Okadaic acid-sensitive phosphatase is related to MII/G1 transition in mouse oocytes., Moride N, Kuwahara A, Sutoh A, Tanaka Y, Mukai Y, Yamashita M, Matsuzaki T, Yasui T, Irahara M., Zygote. May 1, 2012; 20 (2): 193-8.


Pattern of calbindin-D28k and calretinin immunoreactivity in the brain of Xenopus laevis during embryonic and larval development., Morona R, González A., J Comp Neurol. January 1, 2013; 521 (1): 79-108.                  


Pax3 and Zic1 drive induction and differentiation of multipotent, migratory, and functional neural crest in Xenopus embryos., Milet C, Maczkowiak F, Roche DD, Monsoro-Burq AH., Proc Natl Acad Sci U S A. April 2, 2013; 110 (14): 5528-33.                      


Angiogenesis in the intermediate lobe of the pituitary gland alters its structure and function., Tanaka S, Nakakura T, Jansen EJ, Unno K, Okada R, Suzuki M, Martens GJ, Kikuyama S., Gen Comp Endocrinol. May 1, 2013; 185 10-8.        


Wiring the retinal circuits activated by light during early development., Bertolesi GE, Hehr CL, McFarlane S., Neural Dev. February 13, 2014; 9 3.              


Ascl1 as a novel player in the Ptf1a transcriptional network for GABAergic cell specification in the retina., Mazurier N, Parain K, Parlier D, Pretto S, Hamdache J, Vernier P, Locker M, Bellefroid E, Perron M., PLoS One. March 18, 2014; 9 (3): e92113.                        


Dopamine: a parallel pathway for the modulation of spinal locomotor networks., Sharples SA, Koblinger K, Humphreys JM, Whelan PJ., Front Neural Circuits. June 16, 2014; 8 55.          


Ascl1 phospho-status regulates neuronal differentiation in a Xenopus developmental model of neuroblastoma., Wylie LA, Hardwick LJ, Papkovskaia TD, Thiele CJ, Philpott A., Dis Model Mech. May 1, 2015; 8 (5): 429-41.                


Spatiotemporal Development of the Orexinergic (Hypocretinergic) System in the Central Nervous System of Xenopus laevis., López JM, Morales L, González A., Brain Behav Evol. January 1, 2016; 88 (2): 127-146.


ACT-PRESTO: Rapid and consistent tissue clearing and labeling method for 3-dimensional (3D) imaging., Lee E, Choi J, Jo Y, Kim JY, Jang YJ, Lee HM, Kim SY, Lee HJ, Cho K, Jung N, Hur EM, Jeong SJ, Moon C, Choe Y, Rhyu IJ, Kim H, Sun W., Sci Rep. January 11, 2016; 6 18631.                    


Deep-brain photoreception links luminance detection to motor output in Xenopus frog tadpoles., Currie SP, Doherty GH, Sillar KT., Proc Natl Acad Sci U S A. May 24, 2016; 113 (21): 6053-8.                      


Gene expression analysis of developing cell groups in the pretectal region of Xenopus laevis., Morona R, Ferran JL, Puelles L, González A., J Comp Neurol. March 1, 2017; 525 (4): 715-752.                                            


Comparative analysis of monoaminergic cerebrospinal fluid-contacting cells in Osteichthyes (bony vertebrates)., Xavier AL, Fontaine R, Bloch S, Affaticati P, Jenett A, Demarque M, Vernier P, Yamamoto K., J Comp Neurol. June 15, 2017; 525 (9): 2265-2283.                        

???pagination.result.page??? 1 2 ???pagination.result.next???