Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (68) GO Terms (3) Nucleotides (44) Proteins (32) Interactants (163) Wiki
XB-GENEPAGE-994674

Papers associated with crh



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

referenced by:


Evidence for corticotropin releasing factor (CRF) synthesis in the preoptic nucleus of Xenopus laevis tadpoles: a preliminary report based on lesion experiments., Notenboom CD, Terlou M, Maten ML., Cell Tissue Res. June 11, 1976; 169 (1): 23-31.


Corticotropin-releasing factor (CRF)-like immunoreactivity in the vertebrate endocrine pancreas., Petrusz P, Merchenthaler I, Maderdrut JL, Vigh S, Schally AV., Proc Natl Acad Sci U S A. March 1, 1983; 80 (6): 1721-5.


Corticotropin-releasing factor (CRF)-like immunoreactivity in the gastro-entero-pancreatic endocrine system., Petrusz P, Merchenthaler I, Ordronneau P, Maderdrut JL, Vigh S, Schally AV., Peptides. January 1, 1984; 5 Suppl 1 71-8.


Regulation of MSH release from the neurointermediate lobe of Xenopus laevis by CRF-like peptides., Verburg-Van Kemenade BM, Jenks BG, Cruijsen PM, Dings A, Tonon MC, Vaudry H., Peptides. January 1, 1987; 8 (6): 1093-100.


Immunocytochemical localization and spatial relation to the adenohypophysis of a somatostatin-like and a corticotropin-releasing factor-like peptide in the brain of four amphibian species., Olivereau M, Vandesande F, Boucique E, Ollevier F, Olivereau JM., Cell Tissue Res. February 1, 1987; 247 (2): 317-24.


Immunocytochemical analysis of proenkephalin-derived peptides in the amphibian hypothalamus and optic tectum., Merchenthaler I, Maderdrut JL, Lázár G, Gulyás J, Petrusz P., Dev Biol. July 28, 1987; 416 (2): 219-27.    


Functional expression of brain cholecystokinin and bombesin receptors in Xenopus oocytes., Moriarty TM, Gillo B, Sealfon S, Roberts JL, Blitzer RD, Landau EM., Dev Biol. August 1, 1988; 464 (1): 75-9.


Activation of ionic currents in Xenopus oocytes by corticotropin-releasing peptides., Moriarty TM, Gillo B, Sealfon S, Landau EM., Dev Biol. November 1, 1988; 464 (3): 201-5.


The CRF-related peptide sauvagine stimulates and the GABAB receptor agonist baclofen inhibits cyclic-AMP production in melanotrope cells of Xenopus laevis., Jenks BG, van Zoest ID, de Koning HP, Leenders HJ, Roubos EW., Life Sci. January 1, 1991; 48 (17): 1633-7.


Characterization of the genomic corticotropin-releasing factor (CRF) gene from Xenopus laevis: two members of the CRF family exist in amphibians., Stenzel-Poore MP, Heldwein KA, Stenzel P, Lee S, Vale WW., Mol Endocrinol. October 1, 1992; 6 (10): 1716-24.


Xenopsin, neurotensin, neurotensin(8-13) and N-acetyl-neurotensin(8-13) inhibit vascular leakage in rats after tissue injury., Gao GC, Wei ET., J Pharmacol Exp Ther. May 1, 1993; 265 (2): 619-25.


Spontaneous cytosolic calcium pulses in Xenopus melanotrophs are due to calcium influx during phasic increases in the calcium permeability of the cell membrane., Shibuya I, Douglas WW., Endocrinology. May 1, 1993; 132 (5): 2176-83.


Spontaneous cytosolic calcium pulsing detected in Xenopus melanotrophs: modulation by secreto-inhibitory and stimulant ligands., Shibuya I, Douglas WW., Endocrinology. May 1, 1993; 132 (5): 2166-75.


Evidence of direct estrogenic regulation of human corticotropin-releasing hormone gene expression. Potential implications for the sexual dimophism of the stress response and immune/inflammatory reaction., Vamvakopoulos NC, Chrousos GP., J Clin Invest. October 1, 1993; 92 (4): 1896-902.


Immunohistochemical analysis of the relation between 5-hydroxytryptamine- and neuropeptide-immunoreactive elements in the spinal cord of an amphibian (Xenopus laevis)., Pieribone VA, Brodin L, Hökfelt T., J Comp Neurol. March 22, 1994; 341 (4): 492-506.


Immunohistochemical studies on the development of the hypothalamo-hypophysial system in Xenopus laevis., Ogawa K, Suzuki E, Taniguchi K., Anat Rec. February 1, 1995; 241 (2): 244-54.


Identification of two corticotropin-releasing factor receptors from Xenopus laevis with high ligand selectivity: unusual pharmacology of the type 1 receptor., Dautzenberg FM, Dietrich K, Palchaudhuri MR, Spiess J., J Neurochem. October 1, 1997; 69 (4): 1640-9.


Background adaptation by Xenopus laevis: a model for studying neuronal information processing in the pituitary pars intermedia., Roubos EW., Comp Biochem Physiol A Physiol. November 1, 1997; 118 (3): 533-50.


Mapping of the ligand-selective domain of the Xenopus laevis corticotropin-releasing factor receptor 1: implications for the ligand-binding site., Dautzenberg FM, Wille S, Lohmann R, Spiess J., Proc Natl Acad Sci U S A. April 28, 1998; 95 (9): 4941-6.


Structure and function of the ovine type 1 corticotropin releasing factor receptor (CRF1) and a carboxyl-terminal variant., Myers DA, Trinh JV, Myers TR., Mol Cell Endocrinol. September 25, 1998; 144 (1-2): 21-35.


Identification of amino acids in the N-terminal domain of corticotropin-releasing factor receptor 1 that are important determinants of high-affinity ligand binding., Wille S, Sydow S, Palchaudhuri MR, Spiess J, Dautzenberg FM., J Neurochem. January 1, 1999; 72 (1): 388-95.


Expression of salmon corticotropin-releasing hormone precursor gene in the preoptic nucleus in stressed rainbow trout., Ando H, Hasegawa M, Ando J, Urano A., Gen Comp Endocrinol. January 1, 1999; 113 (1): 87-95.


The ligand-selective domains of corticotropin-releasing factor type 1 and type 2 receptor reside in different extracellular domains: generation of chimeric receptors with a novel ligand-selective profile., Dautzenberg FM, Kilpatrick GJ, Wille S, Hauger RL., J Neurochem. August 1, 1999; 73 (2): 821-9.


Characterization of three corticotropin-releasing factor receptors in catfish: a novel third receptor is predominantly expressed in pituitary and urophysis., Arai M, Assil IQ, Abou-Samra AB., Endocrinology. January 1, 2001; 142 (1): 446-54.


Different binding modes of amphibian and human corticotropin-releasing factor type 1 and type 2 receptors: evidence for evolutionary differences., Dautzenberg FM, Py-Lang G, Higelin J, Fischer C, Wright MB, Huber G., J Pharmacol Exp Ther. January 1, 2001; 296 (1): 113-20.


125I-Antisauvagine-30: a novel and specific high-affinity radioligand for the characterization of corticotropin-releasing factor type 2 receptors., Higelin J, Py-Lang G, Paternoster C, Ellis GJ, Patel A, Dautzenberg FM., Neuropharmacology. January 1, 2001; 40 (1): 114-22.


Biochemical characterization and expression analysis of the Xenopus laevis corticotropin-releasing hormone binding protein., Valverde RA, Seasholtz AF, Cortright DN, Denver RJ., Mol Cell Endocrinol. February 28, 2001; 173 (1-2): 29-40.


Cloning and functional pharmacology of two corticotropin-releasing factor receptors from a teleost fish., Pohl S, Darlison MG, Clarke WC, Lederis K, Richter D., Eur J Pharmacol. November 2, 2001; 430 (2-3): 193-202.


Five amino acids of the Xenopus laevis CRF (corticotropin-releasing factor) type 2 receptor mediate differential binding of CRF ligands in comparison with its human counterpart., Dautzenberg FM, Higelin J, Brauns O, Butscha B, Hauger RL., Mol Pharmacol. May 1, 2002; 61 (5): 1132-9.


Corticotropin-releasing hormone-binding protein: biochemistry and function from fishes to mammals., Seasholtz AF, Valverde RA, Denver RJ., J Endocrinol. October 1, 2002; 175 (1): 89-97.


Roles of corticotropin-releasing factor, neuropeptide Y and corticosterone in the regulation of food intake in Xenopus laevis., Crespi EJ, Vaudry H, Denver RJ., J Neuroendocrinol. March 1, 2004; 16 (3): 279-88.


Binding differences of human and amphibian corticotropin-releasing factor type 1 (CRF(1)) receptors: identification of amino acids mediating high-affinity astressin binding and functional antagonism., Dautzenberg FM, Wille S., Regul Pept. May 15, 2004; 118 (3): 165-73.


Expression and hypophysiotropic actions of corticotropin-releasing factor in Xenopus laevis., Boorse GC, Denver RJ., Gen Comp Endocrinol. July 1, 2004; 137 (3): 272-82.


Regulation of pituitary thyrotropin gene expression during Xenopus metamorphosis: negative feedback is functional throughout metamorphosis., Manzon RG, Denver RJ., J Endocrinol. August 1, 2004; 182 (2): 273-85.


Cloning and tissue distribution of the chicken type 2 corticotropin-releasing hormone receptor., de Groef B, Grommen SV, Mertens I, Schoofs L, Kühn ER, Darras VM., Gen Comp Endocrinol. August 1, 2004; 138 (1): 89-95.


Distribution and acute stressor-induced activation of corticotrophin-releasing hormone neurones in the central nervous system of Xenopus laevis., Yao M, Westphal NJ, Denver RJ., J Neuroendocrinol. November 1, 2004; 16 (11): 880-93.


Ontogeny of corticotropin-releasing factor effects on locomotion and foraging in the Western spadefoot toad (Spea hammondii)., Crespi EJ, Denver RJ., Horm Behav. November 1, 2004; 46 (4): 399-410.


Opioid peptides, CRF, and urocortin in cerebrospinal fluid-contacting neurons in Xenopus laevis., Calle M, Claassen IE, Veening JG, Kozicz T, Roubos EW, Barendregt HP., Ann N Y Acad Sci. April 1, 2005; 1040 249-52.


Evidence that urocortin I acts as a neurohormone to stimulate alpha MSH release in the toad Xenopus laevis., Calle M, Corstens GJ, Wang L, Kozicz T, Denver RJ, Barendregt HP, Roubos EW., Dev Biol. April 8, 2005; 1040 (1-2): 14-28.              


Urocortins of the South African clawed frog, Xenopus laevis: conservation of structure and function in tetrapod evolution., Boorse GC, Crespi EJ, Dautzenberg FM, Denver RJ., Endocrinology. November 1, 2005; 146 (11): 4851-60.


Widespread tissue distribution and diverse functions of corticotropin-releasing factor and related peptides., Boorse GC, Denver RJ., Gen Comp Endocrinol. March 1, 2006; 146 (1): 9-18.      


Corticotropin-releasing factor is cytoprotective in Xenopus tadpole tail: coordination of ligand, receptor, and binding protein in tail muscle cell survival., Boorse GC, Kholdani CA, Seasholtz AF, Denver RJ., Endocrinology. March 1, 2006; 147 (3): 1498-507.


Effect of starvation on Fos and neuropeptide immunoreactivities in the brain and pituitary gland of Xenopus laevis., Calle M, Kozicz T, van der Linden E, Desfeux A, Veening JG, Barendregt HP, Roubos EW., Gen Comp Endocrinol. July 1, 2006; 147 (3): 237-46.        


Localisation and physiological regulation of corticotrophin-releasing factor receptor 1 mRNA in the Xenopus laevis brain and pituitary gland., Calle M, Jenks BG, Corstens GJ, Veening JG, Barendregt HP, Roubos EW., J Neuroendocrinol. October 1, 2006; 18 (10): 797-805.


Structural and functional conservation of vertebrate corticotropin-releasing factor genes: evidence for a critical role for a conserved cyclic AMP response element., Yao M, Stenzel-Poore M, Denver RJ., Endocrinology. May 1, 2007; 148 (5): 2518-31.


A combined patch-clamp and electrorotation study of the voltage- and frequency-dependent membrane capacitance caused by structurally dissimilar lipophilic anions., Zimmermann D, Kiesel M, Terpitz U, Zhou A, Reuss R, Kraus J, Schenk WA, Bamberg E, Sukhorukov VL., J Membr Biol. January 1, 2008; 221 (2): 107-21.            


Brain distribution and evidence for both central and neurohormonal actions of cocaine- and amphetamine-regulated transcript peptide in Xenopus laevis., Roubos EW, Lázár G, Calle M, Barendregt HP, Gaszner B, Kozicz T., J Comp Neurol. April 1, 2008; 507 (4): 1622-38.                  


Evolutionarily conserved glucocorticoid regulation of corticotropin-releasing factor expression., Yao M, Schulkin J, Denver RJ., Endocrinology. May 1, 2008; 149 (5): 2352-60.


Teratogenic effects of chronic treatment with corticosterone on tadpoles of Xenopus laevis., Lorenz C, Opitz R, Lutz I, Kloas W., Ann N Y Acad Sci. April 1, 2009; 1163 454-6.


The organization of CRF neuronal pathways in toads: Evidence that retinal afferents do not contribute significantly to tectal CRF content., Carr JA, Lustgarten J, Ahmed N, Bergfeld N, Bulin SE, Shoukfeh O, Tripathy S., Brain Behav Evol. January 1, 2010; 76 (1): 71-86.

???pagination.result.page??? 1 2 ???pagination.result.next???