Results 1 - 50 of 139 results
Influence of Sox protein SUMOylation on neural development and regeneration. , Chang KC., Neural Regen Res. March 1, 2022; 17 (3): 477-481.
Temporal and spatial transcriptomic dynamics across brain development in Xenopus laevis tadpoles. , Ta AC , Huang LC, McKeown CR , Bestman JE , Van Keuren-Jensen K, Cline HT ., G3 (Bethesda). January 1, 2022; 12 (1):
An efficient miRNA knockout approach using CRISPR-Cas9 in Xenopus. , Godden AM, Antonaci M, Ward NJ, van der Lee M, Abu-Daya A, Guille M, Wheeler GN ., Dev Biol. January 1, 2022; 483 66-75.
Ptk7 Is Dynamically Localized at Neural Crest Cell-Cell Contact Sites and Functions in Contact Inhibition of Locomotion. , Grund A, Till K, Giehl K, Borchers A ., Int J Mol Sci. August 28, 2021; 22 (17):
4-Octylphenol induces developmental abnormalities and interferes the differentiation of neural crest cells in Xenopus laevis embryos. , Xu Y , Jang JH, Gye MC., Environ Pollut. April 1, 2021; 274 116560.
Using Xenopus to analyze neurocristopathies like Kabuki syndrome. , Schwenty-Lara J, Pauli S, Borchers A ., Genesis. January 1, 2021; 59 (1-2): e23404.
Cellular response to spinal cord injury in regenerative and non-regenerative stages in Xenopus laevis. , Edwards-Faret G, González-Pinto K, Cebrián-Silla A, Peñailillo J , García-Verdugo JM, Larraín J ., Neural Dev. January 1, 2021; 16 (1): 2.
Fibroblast dedifferentiation as a determinant of successful regeneration. , Lin TY, Gerber T, Taniguchi-Sugiura Y, Murawala P, Hermann S, Grosser L, Shibata E, Treutlein B, Tanaka EM ., Dev Cell. January 1, 2021; 56 (10): 1541-1551.e6.
Anaplastic lymphoma kinase (alk), a neuroblastoma associated gene, is expressed in neural crest domains during embryonic development of Xenopus. , Moreno MM, Barrell WB, Godwin A, Guille M, Liu KJ ., Gene Expr Patterns. January 1, 2021; 40 119183.
Function of chromatin modifier Hmgn1 during neural crest and craniofacial development. , Ihewulezi C, Saint-Jeannet JP ., Genesis. January 1, 2021; 59 (10): e23447.
BMP signaling is enhanced intracellularly by FHL3 controlling WNT-dependent spatiotemporal emergence of the neural crest. , Alkobtawi M, Pla P, Monsoro-Burq AH ., Cell Rep. January 1, 2021; 35 (12): 109289.
Heparan sulfate proteoglycans regulate BMP signalling during neural crest induction. , Pegge J, Tatsinkam AJ, Rider CC, Bell E ., Dev Biol. January 1, 2020; 460 (2): 108-114.
Disrupted ER membrane protein complex-mediated topogenesis drives congenital neural crest defects. , Marquez J , Criscione J, Charney RM , Prasad MS , Hwang WY, Mis EK, García-Castro MI, Khokha MK ., J Clin Invest. January 1, 2020; 130 (2): 813-826.
The transcription factor Hypermethylated in Cancer 1 (Hic1) regulates neural crest migration via interaction with Wnt signaling. , Ray H , Chang C ., Dev Biol. January 1, 2020; 463 (2): 169-181.
Dynamic expression of MMP28 during cranial morphogenesis. , Gouignard N , Theveneau E , Saint-Jeannet JP ., Philos Trans R Soc Lond B Biol Sci. January 1, 2020; 375 (1809): 20190559.
PDGF-B: The missing piece in the mosaic of PDGF family role in craniofacial development. , Corsinovi D, Giannetti K, Cericola A, Naef V, Ori M ., Dev Dyn. January 1, 2019; 248 (7): 603-612.
A new transgenic reporter line reveals Wnt-dependent Snai2 re-expression and cranial neural crest differentiation in Xenopus. , Li J, Perfetto M, Materna C, Li R, Thi Tran H, Vleminckx K , Vleminckx K , Duncan MK, Wei S ., Sci Rep. January 1, 2019; 9 (1): 11191.
BAP1 regulates epigenetic switch from pluripotency to differentiation in developmental lineages giving rise to BAP1-mutant cancers. , Kuznetsov JN , Aguero TH , Owens DA , Kurtenbach S, Field MG, Durante MA, Rodriguez DA, King ML , Harbour JW., Sci Adv. January 1, 2019; 5 (9): eaax1738.
NEIL1 and NEIL2 DNA glycosylases protect neural crest development against mitochondrial oxidative stress. , Han D, Schomacher L, Schüle KM, Mallick M, Musheev MU, Karaulanov E , Krebs L, von Seggern A, Niehrs C ., Elife. January 1, 2019; 8
Znf703 is a novel RA target in the neural plate border. , Janesick A , Tang W, Ampig K, Blumberg B ., Sci Rep. January 1, 2019; 9 (1): 8275.
Anosmin-1 is essential for neural crest and cranial placodes formation in Xenopus. , Bae CJ, Hong CS , Saint-Jeannet JP ., Biochem Biophys Res Commun. January 1, 2018; 495 (3): 2257-2263.
microRNAs associated with early neural crest development in Xenopus laevis. , Ward NJ, Green D, Higgins J, Dalmay T, Münsterberg A, Moxon S, Wheeler GN ., BMC Genomics. January 1, 2018; 19 (1): 59.
Characterization of Pax3 and Sox10 transgenic Xenopus laevis embryos as tools to study neural crest development. , Alkobtawi M, Ray H , Barriga EH, Moreno M, Kerney R, Monsoro-Burq AH , Saint-Jeannet JP , Mayor R ., Dev Biol. January 1, 2018; 444 Suppl 1 S202-S208.
Glycogen synthase kinase 3 controls migration of the neural crest lineage in mouse and Xenopus. , Gonzalez Malagon SG, Lopez Muñoz AM, Doro D, Bolger TG, Poon E, Tucker ER, Adel Al-Lami H, Krause M, Phiel CJ, Chesler L, Liu KJ , Liu KJ ., Nat Commun. January 1, 2018; 9 (1): 1126.
Regulation of neural crest development by the formin family protein Daam1. , Ossipova O, Kerney R, Saint-Jeannet JP , Sokol SY ., Genesis. January 1, 2018; 56 (6-7): e23108.
AKT signaling displays multifaceted functions in neural crest development. , Sittewelle M, Monsoro-Burq AH ., Dev Biol. January 1, 2018; 444 Suppl 1 S144-S155.
Early specification and development of rabbit neural crest cells. , Betters E, Charney RM , Garcia-Castro MI., Dev Biol. January 1, 2018; 444 Suppl 1 S181-S192.
Redistribution of Adhesive Forces through Src/FAK Drives Contact Inhibition of Locomotion in Neural Crest. , Roycroft A, Szabó A, Bahm I, Daly L, Charras G, Parsons M , Mayor R ., Dev Cell. January 1, 2018; 45 (5): 565-579.e3.
The b-HLH transcription factor Hes3 participates in neural plate border formation by interfering with Wnt/ β-catenin signaling. , Hong CS , Saint-Jeannet JP ., Dev Biol. January 1, 2018; 442 (1): 162-172.
Dkk2 promotes neural crest specification by activating Wnt/ β-catenin signaling in a GSK3β independent manner. , Devotta A, Hong CS , Saint-Jeannet JP ., Elife. January 1, 2018; 7
Gli2 is required for the induction and migration of Xenopus laevis neural crest. , Cerrizuela S, Vega-López GA, Palacio MB, Tríbulo C, Aybar MJ , Aybar MJ ., Mech Dev. January 1, 2018; 154 219-239.
MMP14 Regulates Cranial Neural Crest Epithelial-to-Mesenchymal Transition and Migration. , Garmon T, Wittling M, Nie S ., Dev Dyn. January 1, 2018; 247 (9): 1083-1092.
A transition from SoxB1 to SoxE transcription factors is essential for progression from pluripotent blastula cells to neural crest cells. , Buitrago-Delgado E, Schock EN , Nordin K, LaBonne C ., Dev Biol. January 1, 2018; 444 (2): 50-61.
Physiological effects of KDM5C on neural crest migration and eye formation during vertebrate development. , Kim Y, Jeong Y, Kwon K, Ismail T, Lee HK , Kim C, Park JW, Kwon OS, Kang BS, Lee DS, Park TJ, Kwon T , Lee HS ., Epigenetics Chromatin. January 1, 2018; 11 (1): 72.
Alteration of the Retinoid Acid- CBP Signaling Pathway in Neural Crest Induction Contributes to Enteric Nervous System Disorder. , Li C, Hu R, Hou N, Wang Y, Wang Z, Yang T, Gu Y, He M, Shi Y , Chen J , Song W, Li T., Front Pediatr. January 1, 2018; 6 382.
Gap junction protein Connexin-43 is a direct transcriptional regulator of N-cadherin in vivo. , Kotini M, Barriga EH, Leslie J , Gentzel M, Rauschenberger V, Schambony A , Mayor R ., Nat Commun. January 1, 2018; 9 (1): 3846.
Heterogeneity of the astrocytic AMPA-receptor transcriptome. , Mölders A, Koch A, Menke R, Klöcker N., Glia. January 1, 2018; 66 (12): 2604-2616.
The neural border: Induction, specification and maturation of the territory that generates neural crest cells. , Pla P, Monsoro-Burq AH ., Dev Biol. January 1, 2018; 444 Suppl 1 S36-S46.
A molecular atlas of the developing ectoderm defines neural, neural crest, placode, and nonneural progenitor identity in vertebrates. , Plouhinec JL, Medina-Ruiz S, Borday C, Bernard E, Vert JP, Eisen MB, Harland RM , Monsoro-Burq AH ., PLoS Biol. October 1, 2017; 15 (10): e2004045.
The Sox transcriptional factors: Functions during intestinal development in vertebrates. , Fu L, Shi YB ., Semin Cell Dev Biol. January 1, 2017; 63 58-67.
PFKFB4 control of AKT signaling is essential for premigratory and migratory neural crest formation. , Figueiredo AL, Maczkowiak F, Borday C, Pla P, Sittewelle M, Pegoraro C, Monsoro-Burq AH ., Development. January 1, 2017; 144 (22): 4183-4194.
Znf703, a novel target of Pax3 and Zic1, regulates hindbrain and neural crest development in Xenopus. , Hong CS , Saint-Jeannet JP ., Genesis. January 1, 2017; 55 (12):
The ectodomain of cadherin-11 binds to erbB2 and stimulates Akt phosphorylation to promote cranial neural crest cell migration. , Mathavan K, Khedgikar V, Bartolo V, Alfandari D , Alfandari D ., PLoS One. January 1, 2017; 12 (11): e0188963.
Imaging Myelination In Vivo Using Transparent Animal Models. , Bin JM, Lyons DA., Brain Plast. December 21, 2016; 2 (1): 3-29.
Controlled levels of canonical Wnt signaling are required for neural crest migration. , Maj E, Künneke L, Loresch E, Grund A, Melchert J, Pieler T , Aspelmeier T, Borchers A ., Dev Biol. September 1, 2016; 417 (1): 77-90.
The positive transcriptional elongation factor (P-TEFb) is required for neural crest specification. , Hatch VL , Marin-Barba M, Moxon S, Ford CT, Ward NJ, Tomlinson ML, Desanlis I, Hendry AE, Hontelez S , van Kruijsbergen I, Veenstra GJ , Münsterberg AE, Wheeler GN ., Dev Biol. August 15, 2016; 416 (2): 361-72.
Sf3b4-depleted Xenopus embryos: A model to study the pathogenesis of craniofacial defects in Nager syndrome. , Devotta A, Juraver-Geslin H , Gonzalez JA, Hong CS , Saint-Jeannet JP ., Dev Biol. July 15, 2016; 415 (2): 371-382.
Chd7 cooperates with Sox10 and regulates the onset of CNS myelination and remyelination. , He D, Marie C, Zhao C, Kim B, Wang J , Deng Y, Clavairoly A, Frah M, Wang H, He X , Hmidan H, Jones BV, Witte D, Zalc B , Zhou X , Choo DI, Martin DM, Parras C, Lu QR., Nat Neurosci. May 1, 2016; 19 (5): 678-89.
Hmga2 is required for neural crest cell specification in Xenopus laevis. , Macrì S, Simula L, Pellarin I, Pegoraro S, Onorati M, Sgarra R, Manfioletti G, Vignali R ., Dev Biol. March 1, 2016; 411 (1): 25-37.
Neil DNA glycosylases promote substrate turnover by Tdg during DNA demethylation. , Schomacher L, Han D, Musheev MU, Arab K, Kienhöfer S, von Seggern A, Niehrs C ., Nat Struct Mol Biol. February 1, 2016; 23 (2): 116-124.