Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (42) GO Terms (21) Nucleotides (75) Proteins (36) Interactants (505) Wiki
XB--481409

Papers associated with osr1



???displayGene.coCitedPapers???
4 ???displayGene.morpholinoPapers???

???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

referenced by:


Uncovering the mesendoderm gene regulatory network through multi-omic data integration., Jansen C, Paraiso KD, Zhou JJ, Blitz IL, Fish MB, Charney RM, Cho JS, Yasuoka Y, Sudou N, Bright AR, Wlizla M, Veenstra GJC, Taira M, Zorn AM, Mortazavi A, Cho KWY., Cell Rep. February 15, 2022; 38 (7): 110364.                            


Role of KLHL3 and dietary K+ in regulating KS-WNK1 expression., Ostrosky-Frid M, Chávez-Canales M, Zhang J, Andrukhova O, Argaiz ER, Lerdo-de-Tejada F, Murillo-de-Ozores A, Sanchez-Navarro A, Rojas-Vega L, Bobadilla NA, Vazquez N, Castañeda-Bueno M, Alessi DR, Gamba G., Am J Physiol Renal Physiol. May 1, 2021; 320 (5): F734-F747.                    


Modeling endoderm development and disease in Xenopus., Edwards NA, Zorn AM., Curr Top Dev Biol. January 1, 2021; 145 61-90.


Sox17 and β-catenin co-occupy Wnt-responsive enhancers to govern the endoderm gene regulatory network., Mukherjee S, Chaturvedi P, Rankin SA, Rankin SA, Fish MB, Wlizla M, Paraiso KD, MacDonald M, Chen X, Weirauch MT, Blitz IL, Cho KW, Zorn AM., Elife. September 7, 2020; 9                           


Modeling Bainbridge-Ropers Syndrome in Xenopus laevis Embryos., Lichtig H, Artamonov A, Polevoy H, Reid CD, Bielas SL, Frank D., Front Physiol. January 1, 2020; 11 75.                    


Modeling congenital kidney diseases in Xenopus laevis., Blackburn ATM, Miller RK., Dis Model Mech. April 9, 2019; 12 (4):       


Arid3a regulates nephric tubule regeneration via evolutionarily conserved regeneration signal-response enhancers., Suzuki N, Hirano K, Ogino H, Ochi H., Elife. January 8, 2019; 8                                             


Evolutionarily conserved Tbx5-Wnt2/2b pathway orchestrates cardiopulmonary development., Steimle JD, Rankin SA, Rankin SA, Slagle CE, Bekeny J, Rydeen AB, Chan SS, Kweon J, Yang XH, Ikegami K, Nadadur RD, Rowton M, Hoffmann AD, Lazarevic S, Thomas W, Boyle Anderson EAT, Horb ME, Luna-Zurita L, Ho RK, Kyba M, Jensen B, Zorn AM, Conlon FL, Moskowitz IP., Proc Natl Acad Sci U S A. November 6, 2018; 115 (45): E10615-E10624.                                  


Spemann organizer transcriptome induction by early beta-catenin, Wnt, Nodal, and Siamois signals in Xenopus laevis., Ding Y, Ploper D, Sosa EA, Colozza G, Moriyama Y, Benitez MD, Zhang K, Merkurjev D, De Robertis EM., Proc Natl Acad Sci U S A. April 11, 2017; 114 (15): E3081-E3090.                        


Direct reprogramming of fibroblasts into renal tubular epithelial cells by defined transcription factors., Kaminski MM, Tosic J, Kresbach C, Engel H, Klockenbusch J, Müller AL, Pichler R, Grahammer F, Kretz O, Huber TB, Walz G, Arnold SJ, Lienkamp SS., Nat Cell Biol. December 1, 2016; 18 (12): 1269-1280.                  


A Retinoic Acid-Hedgehog Cascade Coordinates Mesoderm-Inducing Signals and Endoderm Competence during Lung Specification., Rankin SA, Rankin SA, Han L, McCracken KW, Kenny AP, Anglin CT, Grigg EA, Crawford CM, Wells JM, Shannon JM, Zorn AM., Cell Rep. June 28, 2016; 16 (1): 66-78.                                              


OSR1 and SPAK Sensitivity of Large-Conductance Ca2+ Activated K+ Channel., Elvira B, Singh Y, Warsi J, Munoz C, Lang F., Cell Physiol Biochem. January 1, 2016; 38 (4): 1652-62.


Down-Regulation of Excitatory Amino Acid Transporters EAAT1 and EAAT2 by the Kinases SPAK and OSR1., Abousaab A, Warsi J, Elvira B, Alesutan I, Hoseinzadeh Z, Lang F., J Membr Biol. December 1, 2015; 248 (6): 1107-19.


TRPP2-dependent Ca2+ signaling in dorso-lateral mesoderm is required for kidney field establishment in Xenopus., Futel M, Leclerc C, Le Bouffant R, Buisson I, Néant I, Umbhauer M, Moreau M, Riou JF., J Cell Sci. March 1, 2015; 128 (5): 888-99.                      


SPAK and OSR1 sensitivity of voltage-gated K+ channel Kv1.5., Elvira B, Warsi J, Munoz C, Lang F., J Membr Biol. February 1, 2015; 248 (1): 59-66.


SPAK and OSR1 Sensitivity of Excitatory Amino Acid Transporter EAAT3., Borrás J, Salker MS, Elvira B, Warsi J, Fezai M, Hoseinzadeh Z, Lang F., Nephron. January 1, 2015; 130 (3): 221-8.


Up-Regulation of Intestinal Phosphate Transporter NaPi-IIb (SLC34A2) by the Kinases SPAK and OSR1., Fezai M, Elvira B, Warsi J, Ben-Attia M, Hosseinzadeh Z, Lang F., Kidney Blood Press Res. January 1, 2015; 40 (6): 555-64.


SPAK and OSR1 Sensitive Cell Membrane Protein Abundance and Activity of KCNQ1/E1 K+ Channels., Elvira B, Warsi J, Fezai M, Munoz C, Lang F., Cell Physiol Biochem. January 1, 2015; 37 (5): 2032-42.


SPAK and OSR1 Sensitive Kir2.1 K+ Channels., Fezai M, Ahmed M, Hosseinzadeh Z, Elvira B, Lang F., Neurosignals. January 1, 2015; 23 (1): 20-33.


Gene regulatory networks governing lung specification., Rankin SA, Rankin SA, Zorn AM., J Cell Biochem. August 1, 2014; 115 (8): 1343-50.


SPAK and OSR1 dependent down-regulation of murine renal outer medullary K channel ROMK1., Elvira B, Munoz C, Borras J, Chen H, Warsi J, Ajay SS, Shumilina E, Lang F., Kidney Blood Press Res. January 1, 2014; 39 (4): 353-60.


Regulation of ClC-2 activity by SPAK and OSR1., Warsi J, Hosseinzadeh Z, Elvira B, Bissinger R, Shumilina E, Lang F., Kidney Blood Press Res. January 1, 2014; 39 (4): 378-87.


Negative regulation of the creatine transporter SLC6A8 by SPAK and OSR1., Fezai M, Elvira B, Borras J, Ben-Attia M, Hoseinzadeh Z, Lang F., Kidney Blood Press Res. January 1, 2014; 39 (6): 546-54.


Downregulation of peptide transporters PEPT1 and PEPT2 by oxidative stress responsive kinase OSR1., Warsi J, Elvira B, Bissinger R, Shumilina E, Hosseinzadeh Z, Lang F., Kidney Blood Press Res. January 1, 2014; 39 (6): 591-9.


Disease-causing mutations in KLHL3 impair its effect on WNK4 degradation., Wu G, Peng JB., FEBS Lett. June 19, 2013; 587 (12): 1717-22.


WNK4 is an essential effector of anterior formation in FGF signaling., Shimizu M, Goto T, Sato A, Shibuya H., Genes Cells. June 1, 2013; 18 (6): 442-9.        


Calcium-binding protein 39 facilitates molecular interaction between Ste20p proline alanine-rich kinase and oxidative stress response 1 monomers., Ponce-Coria J, Gagnon KB, Delpire E., Am J Physiol Cell Physiol. December 1, 2012; 303 (11): C1198-205.


Suppression of Bmp4 signaling by the zinc-finger repressors Osr1 and Osr2 is required for Wnt/β-catenin-mediated lung specification in Xenopus., Rankin SA, Rankin SA, Gallas AL, Neto A, Gómez-Skarmeta JL, Zorn AM., Development. August 1, 2012; 139 (16): 3010-20.                                                                                


Ion and solute transport by Prestin in Drosophila and Anopheles., Hirata T, Czapar A, Brin L, Haritonova A, Bondeson DP, Linser P, Cabrero P, Thompson J, Dow JA, Romero MF., J Insect Physiol. April 1, 2012; 58 (4): 563-9.


A minor role of WNK3 in regulating phosphorylation of renal NKCC2 and NCC co-transporters in vivo., Oi K, Sohara E, Rai T, Misawa M, Chiga M, Alessi DR, Sasaki S, Uchida S., Biol Open. February 15, 2012; 1 (2): 120-7.              


OSR1-sensitive renal tubular phosphate reabsorption., Pathare G, Föller M, Daryadel A, Mutig K, Bogatikov E, Fajol A, Almilaji A, Michael D, Stange G, Voelkl J, Wagner CA, Bachmann S, Lang F., Kidney Blood Press Res. January 1, 2012; 36 (1): 149-61.


WNK2 kinase is a novel regulator of essential neuronal cation-chloride cotransporters., Rinehart J, Vázquez N, Kahle KT, Hodson CA, Ring AM, Gulcicek EE, Louvi A, Bobadilla NA, Gamba G, Lifton RP., J Biol Chem. August 26, 2011; 286 (34): 30171-80.              


The nephrogenic potential of the transcription factors osr1, osr2, hnf1b, lhx1 and pax8 assessed in Xenopus animal caps., Drews C, Senkel S, Ryffel GU., BMC Dev Biol. January 31, 2011; 11 5.              


Functional insights into the activation mechanism of Ste20-related kinases., Gagnon KB, Rios K, Delpire E., Cell Physiol Biochem. January 1, 2011; 28 (6): 1219-30.


odd skipped related1 reveals a novel role for endoderm in regulating kidney versus vascular cell fate., Mudumana SP, Hentschel D, Liu Y, Vasilyev A, Drummond IA., Development. October 1, 2008; 135 (20): 3355-67.


Odd-skipped genes encode repressors that control kidney development., Tena JJ, Neto A, de la Calle-Mustienes E, Bras-Pereira C, Casares F, Gómez-Skarmeta JL., Dev Biol. January 15, 2007; 301 (2): 518-31.          


Odd-skipped related 1 is required for development of the metanephric kidney and regulates formation and differentiation of kidney precursor cells., James RG, Kamei CN, Wang Q, Jiang R, Schultheiss TM., Development. August 1, 2006; 133 (15): 2995-3004.


The cellular basis of kidney development., Dressler GR., Annu Rev Cell Dev Biol. January 1, 2006; 22 509-29.


Characterization of SPAK and OSR1, regulatory kinases of the Na-K-2Cl cotransporter., Gagnon KB, England R, Delpire E., Mol Cell Biol. January 1, 2006; 26 (2): 689-98.


Identification of novel genes affecting mesoderm formation and morphogenesis through an enhanced large scale functional screen in Xenopus., Chen JA, Voigt J, Gilchrist M, Papalopulu N, Amaya E., Mech Dev. March 1, 2005; 122 (3): 307-31.                                                                                                                      


Characterization of the interaction of the stress kinase SPAK with the Na+-K+-2Cl- cotransporter in the nervous system: evidence for a scaffolding role of the kinase., Piechotta K, Garbarini N, England R, Delpire E., J Biol Chem. December 26, 2003; 278 (52): 52848-56.

???pagination.result.page??? 1