Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (521) GO Terms (6) Nucleotides (111) Proteins (42) Interactants (1716) Wiki
XB--487723

Papers associated with nog

Search for nog morpholinos using Textpresso

Limit to papers also referencing gene:
84 paper(s) referencing morpholinos

Results 1 - 50 of 519 results

Page(s): 1 2 3 4 5 6 7 8 9 10 11 Next

Sort Newest To Oldest Sort Oldest To Newest

referenced by:


Transmembrane H+ fluxes and the regulation of neural induction in Xenopus laevis., Leung HC, Leclerc C, Moreau M, Shipley AM, Miller AL, Miller AL, Webb SE., Zygote. September 17, 2021; 1-12.        


Rab7 is required for mesoderm patterning and gastrulation in Xenopus., Kreis J, Wielath FM, Vick P., Biol Open. July 15, 2021; 10 (7):                               


Secreted inhibitors drive the loss of regeneration competence in Xenopus limbs., Aztekin C, Hiscock TW, Gurdon J, Jullien J, Marioni J, Simons BD., Development. May 13, 2021;


Combinatorial transcription factor activities on open chromatin induce embryonic heterogeneity in vertebrates., Bright AR, van Genesen S, Li Q, Grasso A, Frölich S, van der Sande M, van Heeringen SJ, Veenstra GJC., EMBO J. May 3, 2021; 40 (9): e104913.                        


A temporally resolved transcriptome for developing "Keller" explants of the Xenopus laevis dorsal marginal zone., Kakebeen AD, Huebner RJ, Shindo A, Kwon K, Kwon T, Wills AE, Wallingford JB., Dev Dyn. May 1, 2021; 250 (5): 717-731.              


Segregation of brain and organizer precursors is differentially regulated by Nodal signaling at blastula stage., Castro Colabianchi AM, Tavella MB, Boyadjián López LE, Rubinstein M, Franchini LF, López SL., Biol Open. January 1, 2021; 10 (2):                 


Smad2 and Smad3 differentially modulate chordin transcription via direct binding on the distal elements in gastrula Xenopus embryos., Kumar V, Umair Z, Kumar S, Kumar S, Lee U, Kim J., Biochem Biophys Res Commun. January 1, 2021; 559 168-175.          


Fibroblast dedifferentiation as a determinant of successful regeneration., Lin TY, Gerber T, Taniguchi-Sugiura Y, Murawala P, Hermann S, Grosser L, Shibata E, Treutlein B, Tanaka EM., Dev Cell. January 1, 2021; 56 (10): 1541-1551.e6.                    


Secreted inhibitors drive the loss of regeneration competence in Xenopus limbs., Aztekin C, Hiscock TW, Gurdon J, Jullien J, Marioni J, Simons BD., Development. January 1, 2021; 148 (11):                                             


Dusp1 modulates activin/smad2 mediated germ layer specification via FGF signal inhibition in Xenopus embryos., Umair Z, Kumar S, Rafiq K, Kumar V, Reman ZU, Lee SH, Kim S, Lee JY, Lee U, Kim J., Anim Cells Syst (Seoul). November 27, 2020; 24 (6): 359-370.            


A comparative analysis of fibroblast growth factor receptor signalling during Xenopus development., Brunsdon H, Isaacs HV., Biol Cell. May 1, 2020; 112 (5): 127-139.                


The tumor suppressor PTPRK promotes ZNRF3 internalization and is required for Wnt inhibition in the Spemann organizer., Chang LS, Kim M, Glinka A, Reinhard C, Niehrs C., Elife. January 1, 2020; 9                                                                                               


Modeling Bainbridge-Ropers Syndrome in Xenopus laevis Embryos., Lichtig H, Artamonov A, Polevoy H, Reid CD, Bielas SL, Frank D., Front Physiol. January 1, 2020; 11 75.                    


Natural size variation among embryos leads to the corresponding scaling in gene expression., Leibovich A, Edri T, Klein SL, Moody SA, Fainsod A., Dev Biol. January 1, 2020; 462 (2): 165-179.                    


TMEM79/MATTRIN defines a pathway for Frizzled regulation and is required for Xenopus embryogenesis., Chen M, Amado N, Tan J, Reis A, Ge M, Abreu JG, He X., Elife. January 1, 2020; 9                                                                                           


Foxd4l1.1 negatively regulates transcription of neural repressor ventx1.1 during neuroectoderm formation in Xenopus embryos., Kumar S, Kumar S, Umair Z, Kumar V, Kumar S, Lee U, Kim J., Sci Rep. January 1, 2020; 10 (1): 16780.            


Dact-4 is a Xenopus laevis Spemann organizer gene related to the Dapper/Frodo antagonist of β-catenin family of proteins., Colozza G, De Robertis EM., Gene Expr Patterns. January 1, 2020; 38 119153.                        


STRAP regulates alternative splicing fidelity during lineage commitment of mouse embryonic stem cells., Jin L, Chen Y, Crossman DK, Datta A, Vu T, Mobley JA, Basu MK, Scarduzio M, Wang H, Chang C, Datta PK., Nat Commun. January 1, 2020; 11 (1): 5941.                


Pinhead signaling regulates mesoderm heterogeneity via FGF receptor-dependent pathway., Ossipova O, Itoh K, Radu A, Ezan J, Sokol SY., Development. January 1, 2020;                                       


Cdc2-like kinase 2 (Clk2) promotes early neural development in Xenopus embryos., Virgirinia RP, Jahan N, Okada M, Takebayashi-Suzuki K, Yoshida H, Nakamura M, Akao H, Yoshimoto Y, Fatchiyah F, Ueno N, Suzuki A, Suzuki A., Dev Growth Differ. August 1, 2019; 61 (6): 365-377.                              


Nucleotide receptor P2RY4 is required for head formation via induction and maintenance of head organizer in Xenopus laevis., Harata A, Hirakawa M, Sakuma T, Yamamoto T, Hashimoto C., Dev Growth Differ. February 1, 2019; 61 (2): 186-197.                                


What are the roles of retinoids, other morphogens, and Hox genes in setting up the vertebrate body axis?, Durston AJ., Genesis. January 1, 2019; 57 (7-8): e23296.            


Trpc1 as the Missing Link Between the Bmp and Ca2+ Signalling Pathways During Neural Specification in Amphibians., Néant I, Leung HC, Webb SE, Miller AL, Miller AL, Moreau M, Leclerc C., Sci Rep. January 1, 2019; 9 (1): 16049.                                    


Xenbase: a genomic, epigenomic and transcriptomic model organism database., Karimi K, Fortriede JD, Lotay VS, Burns KA, Wang DZ, Fisher ME, Fisher ME, Pells TJ, James-Zorn C, Wang Y, Ponferrada VG, Chu S, Chaturvedi P, Zorn AM, Vize PD., Nucleic Acids Res. January 1, 2018; 46 (D1): D861-D868.        


Timing is everything: Reiterative Wnt, BMP and RA signaling regulate developmental competence during endoderm organogenesis., Rankin SA, Rankin SA, McCracken KW, Luedeke DM, Han L, Wells JM, Shannon JM, Zorn AM., Dev Biol. January 1, 2018; 434 (1): 121-132.          


Anosmin-1 is essential for neural crest and cranial placodes formation in Xenopus., Bae CJ, Hong CS, Saint-Jeannet JP., Biochem Biophys Res Commun. January 1, 2018; 495 (3): 2257-2263.        


RAPGEF5 Regulates Nuclear Translocation of β-Catenin., Griffin JN, Del Viso F, Duncan AR, Robson A, Hwang W, Kulkarni S, Liu KJ, Liu KJ, Khokha MK., Dev Cell. January 1, 2018; 44 (2): 248-260.e4.                                                


microRNAs associated with early neural crest development in Xenopus laevis., Ward NJ, Green D, Higgins J, Dalmay T, Münsterberg A, Moxon S, Wheeler GN., BMC Genomics. January 1, 2018; 19 (1): 59.              


ADMP controls the size of Spemann''s organizer through a network of self-regulating expansion-restriction signals., Leibovich A, Kot-Leibovich H, Ben-Zvi D, Fainsod A., BMC Biol. January 1, 2018; 16 (1): 13.                


Pitx1 regulates cement gland development in Xenopus laevis through activation of transcriptional targets and inhibition of BMP signaling., Jin Y, Weinstein DC., Dev Biol. January 1, 2018; 437 (1): 41-49.          


Transcriptomics of dorso-ventral axis determination in Xenopus tropicalis., Monteiro RS, Gentsch GE, Smith JC., Dev Biol. January 1, 2018; 439 (2): 69-79.                                    


Retinoic acid-induced expression of Hnf1b and Fzd4 is required for pancreas development in Xenopus laevis., Gere-Becker MB, Pommerenke C, Lingner T, Pieler T., Development. January 1, 2018; 145 (12):                                   


Notch1 is asymmetrically distributed from the beginning of embryogenesis and controls the ventral center., Castro Colabianchi AM, Revinski DR, Encinas PI, Baez MV, Monti RJ, Rodríguez Abinal M, Kodjabachian L, Franchini LF, López SL., Development. January 1, 2018; 145 (14):                           


The b-HLH transcription factor Hes3 participates in neural plate border formation by interfering with Wnt/β-catenin signaling., Hong CS, Saint-Jeannet JP., Dev Biol. January 1, 2018; 442 (1): 162-172.                


Dkk2 promotes neural crest specification by activating Wnt/β-catenin signaling in a GSK3β independent manner., Devotta A, Hong CS, Saint-Jeannet JP., Elife. January 1, 2018; 7                             


Vestigial-like 3 is a novel Ets1 interacting partner and regulates trigeminal nerve formation and cranial neural crest migration., Simon E, Thézé N, Fédou S, Thiébaud P, Faucheux C., Biol Open. October 15, 2017; 6 (10): 1528-1540.                                  


Nodal/Activin Pathway is a Conserved Neural Induction Signal in Chordates., Le Petillon Y, Luxardi G, Scerbo P, Cibois M, Leon A, Subirana L, Irimia M, Kodjabachian L, Escriva H, Bertrand S., Nat Ecol Evol. August 1, 2017; 1 (8): 1192-1200.                                


MicroRNAs and ectodermal specification I. Identification of miRs and miR-targeted mRNAs in early anterior neural and epidermal ectoderm., Shah VV, Soibam B, Ritter RA, Benham A, Oomen J, Sater AK., Dev Biol. June 15, 2017; 426 (2): 200-210.


Brg1 chromatin remodeling ATPase balances germ layer patterning by amplifying the transcriptional burst at midblastula transition., Wagner G, Singhal N, Nicetto D, Straub T, Kremmer E, Rupp RAW., PLoS Genet. May 1, 2017; 13 (5): e1006757.                                    


Tbx2 regulates anterior neural specification by repressing FGF signaling pathway., Cho GS, Park DS, Choi SC, Han JK., Dev Biol. January 15, 2017; 421 (2): 183-193.              


Genome-wide analysis of dorsal and ventral transcriptomes of the Xenopus laevis gastrula., Ding Y, Colozza G, Zhang K, Moriyama Y, Ploper D, Sosa EA, Benitez MDJ, De Robertis EM., Dev Biol. January 1, 2017; 426 (2): 176-187.                                  


Noggin is required for first pharyngeal arch differentiation in the frog Xenopus tropicalis., Young JJ, Kjolby RAS, Wu G, Wong D, Hsu SW, Harland RM., Dev Biol. January 1, 2017; 426 (2): 245-254.                


A catalog of Xenopus tropicalis transcription factors and their regional expression in the early gastrula stage embryo., Blitz IL, Paraiso KD, Patrushev I, Chiu WTY, Cho KWY, Gilchrist MJ., Dev Biol. January 1, 2017; 426 (2): 409-417.        


Identification and comparative analyses of Siamois cluster genes in Xenopus laevis and tropicalis., Haramoto Y, Saijyo T, Tanaka T, Furuno N, Suzuki A, Suzuki A, Ito Y, Kondo M, Taira M, Takahashi S., Dev Biol. January 1, 2017; 426 (2): 374-383.                  


Scaling of pattern formations and morphogen gradients., Inomata H., Dev Growth Differ. January 1, 2017; 59 (1): 41-51.


Collinear Hox-Hox interactions are involved in patterning the vertebrate anteroposterior (A-P) axis., Zhu K, Spaink HP, Durston AJ., PLoS One. January 1, 2017; 12 (4): e0175287.                


Spemann organizer transcriptome induction by early beta-catenin, Wnt, Nodal, and Siamois signals in Xenopus laevis., Ding Y, Ploper D, Sosa EA, Colozza G, Moriyama Y, Benitez MD, Zhang K, Merkurjev D, De Robertis EM., Proc Natl Acad Sci U S A. January 1, 2017; 114 (15): E3081-E3090.                        


Dissecting BMP signaling input into the gene regulatory networks driving specification of the blood stem cell lineage., Kirmizitas A, Meiklejohn S, Ciau-Uitz A, Stephenson R, Patient R., Proc Natl Acad Sci U S A. January 1, 2017; 114 (23): 5814-5821.                    


FoxD1 protein interacts with Wnt and BMP signaling to differentially pattern mesoderm and neural tissue., Polevoy H, Malyarova A, Fonar Y, Elias S, Frank D., Int J Dev Biol. January 1, 2017; 61 (3-4-5): 293-302.              


Lineage commitment of embryonic cells involves MEK1-dependent clearance of pluripotency regulator Ventx2., Scerbo P, Marchal L, Kodjabachian L., Elife. January 1, 2017; 6                               

Page(s): 1 2 3 4 5 6 7 8 9 10 11 Next