Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (90) GO Terms (11) Nucleotides (96) Proteins (44) Interactants (106) Wiki
XB--5805963

Papers associated with trh



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Revealing mitf functions and visualizing allografted tumor metastasis in colorless and immunodeficient Xenopus tropicalis., Ran R, Li L, Xu T, Huang J, He H, Chen Y, Chen Y., Commun Biol. March 5, 2024; 7 (1): 275.                                


Thyroid Disrupting Chemicals in Mixture Perturb Thymocyte Differentiation in Xenopus laevis Tadpoles., McGuire CC, Lawrence BP, Robert J., Toxicol Sci. May 27, 2021; 181 (2): 262-272.


Characterization of a novel thyrotropin-releasing hormone receptor, TRHR3, in chickens., Li X, Li Z, Deng Y, Zhang J, Li J, Wang Y., Poult Sci. March 1, 2020; 99 (3): 1643-1654.              


Effects of cis-bifenthrin enantiomers on the growth, behavioral, biomarkers of oxidative damage and bioaccumulation in Xenopus laevis., Zhang W, Chen L, Diao J, Zhou Z., Aquat Toxicol. September 1, 2019; 214 105237.


Understanding How the Subcommissural Organ and Other Periventricular Secretory Structures Contribute via the Cerebrospinal Fluid to Neurogenesis., Guerra MM, González C, Caprile T, Jara M, Vío K, Muñoz RI, Rodríguez S, Rodríguez EM., Front Cell Neurosci. September 23, 2015; 9 480.                


Dysfunction of the Heteromeric KV7.3/KV7.5 Potassium Channel is Associated with Autism Spectrum Disorders., Gilling M, Rasmussen HB, Calloe K, Sequeira AF, Baretto M, Oliveira G, Almeida J, Lauritsen MB, Ullmann R, Boonen SE, Brondum-Nielsen K, Kalscheuer VM, Tümer Z, Vicente AM, Schmitt N, Tommerup N., Front Genet. April 16, 2013; 4 54.                  


Thyrotropin-releasing hormone (TRH) promotes wound re-epithelialisation in frog and human skin., Meier NT, Haslam IS, Pattwell DM, Zhang GY, Emelianov V, Paredes R, Debus S, Augustin M, Funk W, Amaya E, Kloepper JE, Hardman MJ, Paus R., PLoS One. January 1, 2013; 8 (9): e73596.                


Analysis of the melanotrope cell neuroendocrine interface in two amphibian species, Rana ridibunda and Xenopus laevis: a celebration of 35 years of collaborative research., Jenks BG, Galas L, Kuribara M, Desrues L, Kidane AH, Vaudry H, Scheenen WJ, Roubos EW, Tonon MC., Gen Comp Endocrinol. January 1, 2011; 170 (1): 57-67.


Ultrastructural and neurochemical architecture of the pituitary neural lobe of Xenopus laevis., van Wijk DC, Meijer KH, Roubos EW., Gen Comp Endocrinol. September 1, 2010; 168 (2): 293-301.        


About a snail, a toad, and rodents: animal models for adaptation research., Roubos EW, Jenks BG, Xu L, Kuribara M, Scheenen WJ, Kozicz T., Front Endocrinol (Lausanne). January 1, 2010; 1 4.      


Participation of HERG channel cytoplasmic structures on regulation by the G protein-coupled TRH receptor., Alonso-Ron C, Barros F, Manso DG, Gómez-Varela D, Miranda P, Carretero L, Domínguez P, de la Peña P., Pflugers Arch. April 1, 2009; 457 (6): 1237-52.


Brain distribution and evidence for both central and neurohormonal actions of cocaine- and amphetamine-regulated transcript peptide in Xenopus laevis., Roubos EW, Lázár G, Calle M, Barendregt HP, Gaszner B, Kozicz T., J Comp Neurol. April 1, 2008; 507 (4): 1622-38.                  


Modulation of the heteromeric Kir4.1-Kir5.1 channel by multiple neurotransmitters via Galphaq-coupled receptors., Rojas A, Su J, Yang L, Lee M, Cui N, Zhang X, Fountain D, Jiang C., J Cell Physiol. January 1, 2008; 214 (1): 84-95.


Thyrotropin-releasing hormone (TRH) in the cerebellum., Shibusawa N, Hashimoto K, Yamada M., Cerebellum. January 1, 2008; 7 (1): 84-95.


Plasticity in the melanotrope neuroendocrine interface of Xenopus laevis., Jenks BG, Kidane AH, Scheenen WJ, Roubos EW., Neuroendocrinology. January 1, 2007; 85 (3): 177-85.


Molecular cloning and functional characterization of a prolactin-releasing peptide homolog from Xenopus laevis., Sakamoto T, Oda A, Yamamoto K, Kaneko M, Kikuyama S, Nishikawa A, Takahashi A, Kawauchi H, Tsutsui K, Fujimoto M., Peptides. December 1, 2006; 27 (12): 3347-51.


Carboxyl tail cysteine mutants of the thyrotropin-releasing hormone receptor type 1 exhibit constitutive signaling: role of palmitoylation., Du D, Raaka BM, Grimberg H, Lupu-Meiri M, Oron Y, Gershengorn MC., Mol Pharmacol. July 1, 2005; 68 (1): 204-9.


In situ hybridization localization of TRH precursor and TRH receptor mRNAs in the brain and pituitary of Xenopus laevis., Galas L, Bidaud I, Bulant M, Jenks BG, Ouwens DT, Jégou S, Ladram A, Roubos EW, Nicolas P, Tonon MC, Vaudry H., Ann N Y Acad Sci. April 1, 2005; 1040 95-105.


Low temperature stimulates alpha-melanophore-stimulating hormone secretion and inhibits background adaptation in Xenopus laevis., Tonosaki Y, Cruijsen PM, Nishiyama K, Yaginuma H, Roubos EW., J Neuroendocrinol. November 1, 2004; 16 (11): 894-905.


Distribution of the mRNAs encoding the thyrotropin-releasing hormone (TRH) precursor and three TRH receptors in the brain and pituitary of Xenopus laevis: effect of background color adaptation on TRH and TRH receptor gene expression., Bidaud I, Galas L, Bulant M, Jenks BG, Ouwens DT, Jégou S, Ladram A, Roubos EW, Tonon MC, Nicolas P, Vaudry H., J Comp Neurol. September 6, 2004; 477 (1): 11-28.                      


Pharmacological studies of thyrotropin-releasing hormone (TRH) receptors from Xenopus laevis: is xTRHR3 a TRH receptor?, Lu X, Bidaud I, Ladram A, Gershengorn MC., Endocrinology. May 1, 2003; 144 (5): 1842-6.


Relevance of the proximal domain in the amino-terminus of HERG channels for regulation by a phospholipase C-coupled hormone receptor., Gómez-Varela D, Barros F, Viloria CG, Giráldez T, Manso DG, Dupuy SG, Miranda P, de la Peña P., FEBS Lett. January 30, 2003; 535 (1-3): 125-30.


Characterization and functional expression of cDNAs encoding thyrotropin-releasing hormone receptor from Xenopus laevis., Bidaud I, Lory P, Nicolas P, Bulant M, Ladram A., Eur J Biochem. September 1, 2002; 269 (18): 4566-76.


TRH signal transduction in melanotrope cells of Xenopus laevis., Lieste JR, Schoenmakers TJ, Scheenen WJ, Willems PH, Roubos EW, Jenks BG., Gen Comp Endocrinol. June 1, 2002; 127 (1): 80-8.


[Cardiotoxicity of lindane, a gamma isomer of hexachlorocyclohexane]., Sauviat MP, Pages N., J Soc Biol. January 1, 2002; 196 (4): 339-48.


Cloning of two thyrotropin-releasing hormone receptor subtypes from a lower vertebrate (Catostomus commersoni): functional expression, gene structure, and evolution., Harder S, Dammann O, Buck F, Zwiers H, Lederis K, Richter D, Bruhn TO., Gen Comp Endocrinol. November 1, 2001; 124 (2): 236-45.


Constitutive signaling by Kaposi's sarcoma-associated herpesvirus G-protein-coupled receptor desensitizes calcium mobilization by other receptors., Lupu-Meiri M, Silver RB, Simons AH, Gershengorn MC, Oron Y., J Biol Chem. March 9, 2001; 276 (10): 7122-8.


Juxtamembrane regions in the third intracellular loop of the thyrotropin-releasing hormone receptor type 1 are important for coupling to Gq., Buck F, Wang W, Harder S, Brathwaite C, Bruhn TO, Gershengorn MC., Endocrinology. October 1, 2000; 141 (10): 3717-22.


Rapid desensitization of the TRH receptor and persistent desensitization of its constitutively active mutant., Zaltsman I, Grimberg H, Lupu-Meiri M, Lifschitz L, Oron Y., Br J Pharmacol. May 1, 2000; 130 (2): 315-20.


Transcriptional repression of TRH promoter function by T3: analysis by in vivo gene transfer., Guissouma H, Becker N, Seugnet I, Demeneix BA., Biochem Cell Biol. January 1, 2000; 78 (3): 155-63.


Embryonic silk gland development in Bombyx: molecular cloning and expression of the Bombyx trachealess gene., Matsunami K, Kokubo H, Ohno K, Xu P, Ueno K, Suzuki Y., Dev Genes Evol. September 1, 1999; 209 (9): 507-14.


Inverse agonist abolishes desensitization of a constitutively active mutant of thyrotropin-releasing hormone receptor: role of cellular calcium and protein kinase C., Grimberg H, Zaltsman I, Lupu-Meiri M, Gershengorn MC, Oron Y., Br J Pharmacol. March 1, 1999; 126 (5): 1097-106.


Functional regulation of Galpha16 by protein kinase C., Aragay AM, Quick MW., J Biol Chem. February 19, 1999; 274 (8): 4807-15.


T3-dependent physiological regulation of transcription in the Xenopus tadpole brain studied by polyethylenimine based in vivo gene transfer., Ouatas T, Le Mével S, Demeneix BA, de Luze A., Int J Dev Biol. November 1, 1998; 42 (8): 1159-64.


Modulation of human erg K+ channel gating by activation of a G protein-coupled receptor and protein kinase C., Barros F, Gomez-Varela D, Viloria CG, Palomero T, Giráldez T, de la Peña P., J Physiol. September 1, 1998; 511 ( Pt 2) 333-46.


Background adaptation by Xenopus laevis: a model for studying neuronal information processing in the pituitary pars intermedia., Roubos EW., Comp Biochem Physiol A Physiol. November 1, 1997; 118 (3): 533-50.


Kinetics of calcium steps underlying calcium oscillations in melanotrope cells of Xenopus laevis., Koopman WJ, Scheenen WJ, Roubos EW, Jenks BG., Cell Calcium. September 1, 1997; 22 (3): 167-78.


Sauvagine and TRH differentially stimulate proopiomelanocortin biosynthesis in the Xenopus laevis intermediate pituitary., Dotman CH, Maia A, Jenks BG, Roubos EW., Neuroendocrinology. August 1, 1997; 66 (2): 106-13.


Desensitization of inositol 1,4,5-trisphosphate/Ca2+-induced Cl- currents by prolonged activation of G proteins in Xenopus oocytes., Quick MW, Lester HA, Davidson N, Simon MI, Aragay AM., J Biol Chem. December 13, 1996; 271 (50): 32021-7.


Alkaline pH facilitates the exchange of guanine nucleotides: a possible mechanism for modulation of the kinetics of responses mediated by guanine nucleotide-binding proteins., Lipinsky D, Oron Y., J Cell Physiol. October 1, 1996; 169 (1): 167-74.


Hydropathy profiles of predicted thyrotropin-releasing hormone precursors are highly conserved despite low similarity of primary structures., Ohide A, Ando H, Yanagisawa T, Urano A., J Neuroendocrinol. September 1, 1996; 8 (9): 695-701.


Identification of Asn289 as a ligand binding site in the rat thyrotropin-releasing hormone (THR) receptor as determined by complementary modifications in the ligand and receptor: a new model for THR binding., Han B, Tashjian AH., Biochemistry. October 17, 1995; 34 (41): 13412-22.


Frog prohormone convertase PC2 mRNA has a mammalian-like expression pattern in the central nervous system and is colocalized with a subset of thyrotropin-releasing hormone-expressing neurons., Pu LP, Hayes WP, Mill JF, Ghose S, Friedman TC, Loh YP., J Comp Neurol. March 27, 1995; 354 (1): 71-86.


Gs couples thyrotropin-releasing hormone receptors expressed in Xenopus oocytes to phospholipase C., de la Peña P, del Camino D, Pardo LA, Domínguez P, Barros F., J Biol Chem. February 24, 1995; 270 (8): 3554-9.


Contribution of response kinetics to the response pattern: studies of responses to thyrotropin-releasing hormone in Xenopus oocytes., Lipinsky D, Gershengorn MC, Oron Y., J Cell Physiol. February 1, 1995; 162 (2): 284-9.


Truncation of the thyrotropin-releasing hormone receptor carboxyl tail causes constitutive activity and leads to impaired responsiveness in Xenopus oocytes and AtT20 cells., Matus-Leibovitch N, Nussenzveig DR, Gershengorn MC, Oron Y., J Biol Chem. January 20, 1995; 270 (3): 1041-7.


Desensitization of the response to thyrotropin-releasing hormone in Xenopus oocytes is an amplified process that precedes calcium mobilization., Lipinsky D, Nussenzveig DR, Gershengorn MC, Oron Y., Pflugers Arch. January 1, 1995; 429 (3): 419-25.


Differential coupling of G protein alpha subunits to seven-helix receptors expressed in Xenopus oocytes., Quick MW, Simon MI, Davidson N, Lester HA, Aragay AM., J Biol Chem. December 2, 1994; 269 (48): 30164-72.


The hemispheric functional expression of the thyrotropin-releasing-hormone receptor is not determined by the receptors' physical distribution., Matus-Leibovitch N, Nussenzveig DR, Gershengorn MC, Oron Y., Biochem J. October 1, 1994; 303 ( Pt 1) 129-34.


The TRH neuronal phenotype forms embryonic cell clusters that go on to establish a regionalized cell fate in forebrain., Hayes WP., J Neurobiol. September 1, 1994; 25 (9): 1095-112.

???pagination.result.page??? 1 2 ???pagination.result.next???