Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (32) GO Terms (11) Nucleotides (220) Proteins (46) Interactants (243) Wiki
XB--6457033

Papers associated with nefm



???displayGene.coCitedPapers???
1 ???displayGene.morpholinoPapers???

???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Temporal and spatial transcriptomic dynamics across brain development in Xenopus laevis tadpoles., Ta AC, Huang LC, McKeown CR, Bestman JE, Van Keuren-Jensen K, Cline HT., G3 (Bethesda). January 4, 2022; 12 (1):               


Developmental and Injury-induced Changes in DNA Methylation in Regenerative versus Non-regenerative Regions of the Vertebrate Central Nervous System., Reverdatto S, Prasad A, Belrose JL, Zhang X, Sammons MA, Gibbs KM, Szaro BG., BMC Genomics. January 4, 2022; 23 (1): 2.                      


Developmental gene expression patterns in the brain and liver of Xenopus tropicalis during metamorphosis climax., Yaoita Y, Nakajima K., Genes Cells. December 1, 2018; 23 (12): 998-1008.              


Experience-dependent plasticity of excitatory and inhibitory intertectal inputs in Xenopus tadpoles., Gambrill AC, Faulkner R, Cline HT., J Neurophysiol. November 1, 2016; 116 (5): 2281-2297.


Post-transcriptional regulation mediated by specific neurofilament introns in vivo., Wang C, Wang C, Szaro BG., J Cell Sci. April 1, 2016; 129 (7): 1500-11.


c-Jun N-terminal kinase phosphorylation of heterogeneous nuclear ribonucleoprotein K regulates vertebrate axon outgrowth via a posttranscriptional mechanism., Hutchins EJ, Szaro BG., J Neurosci. September 11, 2013; 33 (37): 14666-80.                


EBF factors drive expression of multiple classes of target genes governing neuronal development., Green YS, Vetter ML., Neural Dev. April 30, 2011; 6 19.                                                          


Metamorphosis and the regenerative capacity of spinal cord axons in Xenopus laevis., Gibbs KM, Chittur SV, Szaro BG., Eur J Neurosci. January 1, 2011; 33 (1): 9-25.    


Transcriptional and translational dynamics of light neurofilament subunit RNAs during Xenopus laevis optic nerve regeneration., Ananthakrishnan L, Szaro BG., Brain Res. January 23, 2009; 1250 27-40.


Zac1 promotes a Müller glial cell fate and interferes with retinal ganglion cell differentiation in Xenopus retina., Ma L, Hocking JC, Hehr CL, Schuurmans C, McFarlane S., Dev Dyn. January 1, 2007; 236 (1): 192-202.          


Identification of shared transcriptional targets for the proneural bHLH factors Xath5 and XNeuroD., Logan MA, Steele MR, Van Raay TJ, Vetter ML., Dev Biol. September 15, 2005; 285 (2): 570-83.          


Increased expression of multiple neurofilament mRNAs during regeneration of vertebrate central nervous system axons., Gervasi C, Thyagarajan A, Szaro BG., J Comp Neurol. June 23, 2003; 461 (2): 262-75.            


Metalloproteases and guidance of retinal axons in the developing visual system., Webber CA, Hocking JC, Yong VW, Stange CL, McFarlane S., J Neurosci. September 15, 2002; 22 (18): 8091-100.                  


Distinct patterns of downstream target activation are specified by the helix-loop-helix domain of proneural basic helix-loop-helix transcription factors., Talikka M, Perez SE, Zimmerman K., Dev Biol. July 1, 2002; 247 (1): 137-48.          


Xebf3 is a regulator of neuronal differentiation during primary neurogenesis in Xenopus., Pozzoli O, Bosetti A, Croci L, Consalez GG, Vetter ML., Dev Biol. May 15, 2001; 233 (2): 495-512.            


The homeobox gene PV.1 mediates specification of the prospective neural ectoderm in Xenopus embryos., Ault KT, Xu RH, Kung HF, Jamrich M., Dev Biol. December 1, 1997; 192 (1): 162-71.            


Xefiltin, a Xenopus laevis neuronal intermediate filament protein, is expressed in actively growing optic axons during development and regeneration., Zhao Y, Szaro BG., J Neurobiol. November 20, 1997; 33 (6): 811-24.                  


Sequence and expression patterns of two forms of the middle molecular weight neurofilament protein (NF-M) of Xenopus laevis., Gervasi C, Szaro BG., Brain Res Mol Brain Res. September 1, 1997; 48 (2): 229-42.


Beta 1 integrins regulate axon outgrowth and glial cell spreading on a glial-derived extracellular matrix during development and regeneration., Sakaguchi DS, Radke K., Brain Res Dev Brain Res. December 23, 1996; 97 (2): 235-50.


Effects of intermediate filament disruption on the early development of the peripheral nervous system of Xenopus laevis., Lin W, Szaro BG., Dev Biol. October 10, 1996; 179 (1): 197-211.            


Medium weight neurofilament mRNA in goldfish Mauthner axoplasm., Weiner OD, Zorn AM, Krieg PA, Bittner GD., Neurosci Lett. August 2, 1996; 213 (2): 83-6.


Neurofilaments help maintain normal morphologies and support elongation of neurites in Xenopus laevis cultured embryonic spinal cord neurons., Lin W, Szaro BG., J Neurosci. December 1, 1995; 15 (12): 8331-44.                


The Xenopus laevis homologue to the neuronal cyclin-dependent kinase (cdk5) is expressed in embryos by gastrulation., Gervasi C, Szaro BG., Brain Res Mol Brain Res. November 1, 1995; 33 (2): 192-200.          


The optic tract and tectal ablation influence the composition of neurofilaments in regenerating optic axons of Xenopus laevis., Zhao Y, Szaro BG., J Neurosci. June 1, 1995; 15 (6): 4629-40.                      


Porcine brain neurofilament-H tail domain kinase: its identification as cdk5/p26 complex and comparison with cdc2/cyclin B kinase., Hisanaga S, Uchiyama M, Hosoi T, Yamada K, Honma N, Ishiguro K, Uchida T, Dahl D, Ohsumi K, Kishimoto T., Cell Motil Cytoskeleton. January 1, 1995; 31 (4): 283-97.


Maturation of neurites in mixed cultures of spinal cord neurons and muscle cells from Xenopus laevis embryos followed with antibodies to neurofilament proteins., Lin W, Szaro BG., J Neurobiol. October 1, 1994; 25 (10): 1235-48.


Expression of achaete-scute homolog 3 in Xenopus embryos converts ectodermal cells to a neural fate., Turner DL, Weintraub H., Genes Dev. June 15, 1994; 8 (12): 1434-47.        


The return of phosphorylated and nonphosphorylated epitopes of neurofilament proteins to the regenerating optic nerve of Xenopus laevis., Zhao Y, Szaro BG., J Comp Neurol. May 1, 1994; 343 (1): 158-72.


Identification and developmental expression of a novel low molecular weight neuronal intermediate filament protein expressed in Xenopus laevis., Charnas LR, Szaro BG, Gainer H., J Neurosci. August 1, 1992; 12 (8): 3010-24.                      


Inhibition of axonal development after injection of neurofilament antibodies into a Xenopus laevis embryo., Szaro BG, Grant P, Lee VM, Gainer H., J Comp Neurol. June 22, 1991; 308 (4): 576-85.


The appearance of acetylated alpha-tubulin during early development and cellular differentiation in Xenopus., Chu DT, Klymkowsky MW., Dev Biol. November 1, 1989; 136 (1): 104-17.                  


Immunocytochemical identification of non-neuronal intermediate filament proteins in the developing Xenopus laevis nervous system., Szaro BG, Gainer H., Dev Biol. October 1, 1988; 471 (2): 207-24.                    

???pagination.result.page??? 1