Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (34) GO Terms (0) Nucleotides (417) Proteins (13) Interactants (480) Wiki
XB--6458181

Papers associated with sox15

Search for sox15 morpholinos using Textpresso

Limit to papers also referencing gene:
12 paper(s) referencing morpholinos

Results 1 - 34 of 34 results

Page(s): 1

Sort Newest To Oldest Sort Oldest To Newest

HMG-box factor SoxD/Sox15 and homeodomain-containing factor Xanf1/Hesx1 directly interact and regulate the expression of Xanf1/Hesx1 during early forebrain development in Xenopus laevis., Martynova NY, Eroshkin FM, Оrlov EE, Zaraisky AG., Gene. January 5, 2018; 638 52-59.      


Neural crest development in Xenopus requires Protocadherin 7 at the lateral neural crest border., Bradley RS., Mech Dev. January 1, 2018; 149 41-52.                


Xenopus SOX5 enhances myogenic transcription indirectly through transrepression., Della Gaspera B, Chesneau A, Weill L, Charbonnier F, Chanoine C., Dev Biol. January 1, 2018; 442 (2): 262-275.                    


Sox5 Is a DNA-binding cofactor for BMP R-Smads that directs target specificity during patterning of the early ectoderm., Nordin K, LaBonne C., Dev Cell. November 10, 2014; 31 (3): 374-382.                              


Specific domains of FoxD4/5 activate and repress neural transcription factor genes to control the progression of immature neural ectoderm to differentiating neural plate., Neilson KM, Klein SL, Mhaske P, Mood K, Daar IO, Moody SA., Dev Biol. May 15, 2012; 365 (2): 363-75.                        


Mechanisms driving neural crest induction and migration in the zebrafish and Xenopus laevis., Klymkowsky MW, Rossi CC, Artinger KB., Cell Adh Migr. October 1, 2010; 4 (4): 595-608.  


Function and molecular evolution of mammalian Sox15, a singleton in the SoxG group of transcription factors., Ito M., Int J Biochem Cell Biol. March 1, 2010; 42 (3): 449-52.


SoxE factors as multifunctional neural crest regulatory factors., Haldin CE, LaBonne C., Int J Biochem Cell Biol. March 1, 2010; 42 (3): 441-4.


Xenopus Meis3 protein lies at a nexus downstream to Zic1 and Pax3 proteins, regulating multiple cell-fates during early nervous system development., Gutkovich YE, Ofir R, Elkouby YM, Dibner C, Gefen A, Elias S, Frank D., Dev Biol. February 1, 2010; 338 (1): 50-62.                  


foxD5 plays a critical upstream role in regulating neural ectodermal fate and the onset of neural differentiation., Yan B, Neilson KM, Moody SA., Dev Biol. May 1, 2009; 329 (1): 80-95.              


Xenopus Sox3 activates sox2 and geminin and indirectly represses Xvent2 expression to induce neural progenitor formation at the expense of non-neural ectodermal derivatives., Rogers CD, Harafuji N, Archer T, Cunningham DD, Casey ES., Mech Dev. January 1, 2009; 126 (1-2): 42-55.        


Evolution of non-coding regulatory sequences involved in the developmental process: reflection of differential employment of paralogous genes as highlighted by Sox2 and group B1 Sox genes., Kamachi Y, Iwafuchi M, Okuda Y, Takemoto T, Uchikawa M, Kondoh H., Proc Jpn Acad Ser B Phys Biol Sci. January 1, 2009; 85 (2): 55-68.                  


Hairy2 functions through both DNA-binding and non DNA-binding mechanisms at the neural plate border in Xenopus., Nichane M, Ren X, Souopgui J, Bellefroid EJ., Dev Biol. October 15, 2008; 322 (2): 368-80.                        


Hairy2-Id3 interactions play an essential role in Xenopus neural crest progenitor specification., Nichane M, de Crozé N, Ren X, Souopgui J, Monsoro-Burq AH, Bellefroid EJ., Dev Biol. October 15, 2008; 322 (2): 355-67.                          


Fibroblast growth factor 13 is essential for neural differentiation in Xenopus early embryonic development., Nishimoto S, Nishida E., J Biol Chem. August 17, 2007; 282 (33): 24255-61.                


The role of XBtg2 in Xenopus neural development., Sugimoto K, Okabayashi K, Sedohara A, Hayata T, Asashima M., Dev Neurosci. January 1, 2007; 29 (6): 468-79.


Expression of Sox1 during Xenopus early embryogenesis., Nitta KR, Takahashi S, Haramoto Y, Fukuda M, Onuma Y, Asashima M., Biochem Biophys Res Commun. December 8, 2006; 351 (1): 287-93.            


Dullard promotes degradation and dephosphorylation of BMP receptors and is required for neural induction., Satow R, Kurisaki A, Chan TC, Hamazaki TS, Asashima M., Dev Cell. December 1, 2006; 11 (6): 763-74.              


XMam1, Xenopus Mastermind1, induces neural gene expression in a Notch-independent manner., Katada T, Ito M, Kojima Y, Miyatani S, Kinoshita T., Mech Dev. November 1, 2006; 123 (11): 851-9.            


Mxi1 is essential for neurogenesis in Xenopus and acts by bridging the pan-neural and proneural genes., Klisch TJ, Souopgui J, Juergens K, Rust B, Pieler T, Henningfeld KA., Dev Biol. April 15, 2006; 292 (2): 470-85.                


RE-1 silencer of transcription/neural restrictive silencer factor modulates ectodermal patterning during Xenopus development., Olguín P, Oteíza P, Gamboa E, Gómez-Skármeta JL, Kukuljan M., J Neurosci. March 8, 2006; 26 (10): 2820-9.                    


Requirement of the MEK5-ERK5 pathway for neural differentiation in Xenopus embryonic development., Nishimoto S, Kusakabe M, Nishida E., EMBO Rep. November 1, 2005; 6 (11): 1064-9.


The Ca2+-induced methyltransferase xPRMT1b controls neural fate in amphibian embryo., Batut J, Vandel L, Leclerc C, Daguzan C, Moreau M, Néant I., Proc Natl Acad Sci U S A. October 18, 2005; 102 (42): 15128-33.                


XNGNR1-dependent neurogenesis mediates early neural cell death., Yeo W, Gautier J., Mech Dev. May 1, 2005; 122 (5): 635-44.        


XSIP1 is essential for early neural gene expression and neural differentiation by suppression of BMP signaling., Nitta KR, Tanegashima K, Takahashi S, Asashima M., Dev Biol. November 1, 2004; 275 (1): 258-67.                    


Integration of multiple signal transducing pathways on Fgf response elements of the Xenopus caudal homologue Xcad3., Haremaki T, Tanaka Y, Hongo I, Yuge M, Okamoto H., Development. October 1, 2003; 130 (20): 4907-17.                  


FRL-1, a member of the EGF-CFC family, is essential for neural differentiation in Xenopus early development., Yabe S, Tanegashima K, Haramoto Y, Takahashi S, Fujii T, Kozuma S, Taketani Y, Asashima M., Development. May 1, 2003; 130 (10): 2071-81.


Techniques and probes for the study of Xenopus tropicalis development., Khokha MK, Chung C, Bustamante EL, Gaw LW, Trott KA, Yeh J, Lim N, Lin JC, Taverner N, Amaya E, Papalopulu N, Smith JC, Zorn AM, Harland RM, Grammer TC., Dev Dyn. December 1, 2002; 225 (4): 499-510.          


Molecular cloning and characterization of dullard: a novel gene required for neural development., Satow R, Chan TC, Asashima M., Biochem Biophys Res Commun. July 5, 2002; 295 (1): 85-91.                  


Intrinsic differences between the superficial and deep layers of the Xenopus ectoderm control primary neuronal differentiation., Chalmers AD, Welchman D, Papalopulu N., Dev Cell. February 1, 2002; 2 (2): 171-82.    


Neural induction takes a transcriptional twist., Bainter JJ, Boos A, Kroll KL., Dev Dyn. November 1, 2001; 222 (3): 315-27.  


Requirement of Sox2-mediated signaling for differentiation of early Xenopus neuroectoderm., Kishi M, Mizuseki K, Sasai N, Yamazaki H, Shiota K, Nakanishi S, Sasai Y., Development. February 1, 2000; 127 (4): 791-800.              


Gene expression screening in Xenopus identifies molecular pathways, predicts gene function and provides a global view of embryonic patterning., Gawantka V, Pollet N, Delius H, Vingron M, Pfister R, Nitsch R, Blumenstock C, Niehrs C., Mech Dev. October 1, 1998; 77 (2): 95-141.                                                            


SoxD: an essential mediator of induction of anterior neural tissues in Xenopus embryos., Mizuseki K, Kishi M, Shiota K, Nakanishi S, Sasai Y., Neuron. July 1, 1998; 21 (1): 77-85.

Page(s): 1