Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (51) GO Terms (3) Nucleotides (180) Proteins (33) Interactants (240) Wiki
XB--855434

Papers associated with eif4e



???displayGene.coCitedPapers???
2 ???displayGene.morpholinoPapers???

???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Tissue disaggregation and isolation of specific cell types from transgenic Xenopus appendages for transcriptional analysis by FACS., Kakebeen AD, Chitsazan AD, Wills AE., Dev Dyn. September 1, 2021; 250 (9): 1381-1392.


FAX-RIC enables robust profiling of dynamic RNP complex formation in multicellular organisms in vivo., Na Y, Kim H, Choi Y, Shin S, Jung JH, Kwon SC, Kim VN, Kim JS., Nucleic Acids Res. March 18, 2021; 49 (5): e28.            


The translational functions of embryonic poly(A)-binding protein during gametogenesis and early embryo development., Ozturk S., Mol Reprod Dev. November 1, 2019; 86 (11): 1548-1560.          


Novel functions of the ubiquitin-independent proteasome system in regulating Xenopus germline development., Hwang H, Jin Z, Krishnamurthy VV, Saha A, Klein PS, Garcia B, Mei W, King ML, Zhang K, Yang J., Development. April 23, 2019; 146 (8):                       


Phosphorylation Dynamics Dominate the Regulated Proteome during Early Xenopus Development., Peuchen EH, Cox OF, Sun L, Hebert AS, Coon JJ, Champion MM, Dovichi NJ, Huber PW., Sci Rep. November 15, 2017; 7 (1): 15647.                          


Viral and cellular mRNA-specific activators harness PABP and eIF4G to promote translation initiation downstream of cap binding., Smith RWP, Anderson RC, Larralde O, Smith JWS, Gorgoni B, Richardson WA, Malik P, Graham SV, Gray NK, Gray NK., Proc Natl Acad Sci U S A. June 13, 2017; 114 (24): 6310-6315.


Xenopus CAF1 requires NOT1-mediated interaction with 4E-T to repress translation in vivo., Waghray S, Williams C, Coon JJ, Wickens M., RNA. July 1, 2015; 21 (7): 1335-45.


Differential requirement of F-actin and microtubule cytoskeleton in cue-induced local protein synthesis in axonal growth cones., Piper M, Lee AC, van Horck FP, McNeilly H, Lu TB, Harris WA, Holt CE., Neural Dev. February 25, 2015; 10 3.            


Distinct features of cap binding by eIF4E1b proteins., Kubacka D, Miguel RN, Minshall N, Darzynkiewicz E, Standart N, Zuberek J., J Mol Biol. January 30, 2015; 427 (2): 387-405.              


Positive mRNA Translational Control in Germ Cells by Initiation Factor Selectivity., Friday AJ, Keiper BD., Biomed Res Int. January 1, 2015; 2015 327963.    


The Xenopus alcohol dehydrogenase gene family: characterization and comparative analysis incorporating amphibian and reptilian genomes., Borràs E, Albalat R, Duester G, Parés X, Farrés J., BMC Genomics. March 20, 2014; 15 216.          


Investigating the consequences of eIF4E2 (4EHP) interaction with 4E-transporter on its cellular distribution in HeLa cells., Kubacka D, Kamenska A, Broomhead H, Minshall N, Darzynkiewicz E, Standart N., PLoS One. January 1, 2013; 8 (8): e72761.                


The translational repressor 4E-BP mediates hypoxia-induced defects in myotome cells., Hidalgo M, Le Bouffant R, Bello V, Buisson N, Cormier P, Beaudry M, Darribère T., J Cell Sci. September 1, 2012; 125 (Pt 17): 3989-4000.            


KHDC1B is a novel CPEB binding partner specifically expressed in mouse oocytes and early embryos., Cai C, Tamai K, Molyneaux K., Mol Biol Cell. September 15, 2010; 21 (18): 3137-48.                  


The nuclear experience of CPEB: implications for RNA processing and translational control., Lin CL, Evans V, Shen S, Xing Y, Richter JD., RNA. February 1, 2010; 16 (2): 338-48.


Pumilio 2 controls translation by competing with eIF4E for 7-methyl guanosine cap recognition., Cao Q, Padmanabhan K, Richter JD., RNA. January 1, 2010; 16 (1): 221-7.


Evolutionary origin and phylogenetic analysis of the novel oocyte-specific eukaryotic translation initiation factor 4E in Tetrapoda., Evsikov AV, Marín de Evsikova C., Dev Genes Evol. February 1, 2009; 219 (2): 111-8.


Translational control in early development: CPEB, P-bodies and germinal granules., Standart N, Minshall N., Biochem Soc Trans. August 1, 2008; 36 (Pt 4): 671-6.


Translational control by cytoplasmic polyadenylation in Xenopus oocytes., Radford HE, Meijer HA, de Moor CH., Biochim Biophys Acta. April 1, 2008; 1779 (4): 217-29.      


CPEB interacts with an ovary-specific eIF4E and 4E-T in early Xenopus oocytes., Minshall N, Reiter MH, Weil D, Standart N., J Biol Chem. December 28, 2007; 282 (52): 37389-401.


CDK1 and calcineurin regulate Maskin association with eIF4E and translational control of cell cycle progression., Cao Q, Kim JH, Richter JD., Nat Struct Mol Biol. December 1, 2006; 13 (12): 1128-34.


Asymmetrical beta-actin mRNA translation in growth cones mediates attractive turning to netrin-1., Leung KM, van Horck FP, Lin AC, Allison R, Standart N, Holt CE., Nat Neurosci. October 1, 2006; 9 (10): 1247-56.


Cytoplasmic CstF-77 protein belongs to a masking complex with cytoplasmic polyadenylation element-binding protein in Xenopus oocytes., Rouget C, Papin C, Mandart E., J Biol Chem. September 29, 2006; 281 (39): 28687-98.


Xp54 and related (DDX6-like) RNA helicases: roles in messenger RNP assembly, translation regulation and RNA degradation., Weston A, Sommerville J., Nucleic Acids Res. June 12, 2006; 34 (10): 3082-94.          


Translational control by neuroguidin, a eukaryotic initiation factor 4E and CPEB binding protein., Jung MY, Lorenz L, Richter JD., Mol Cell Biol. June 1, 2006; 26 (11): 4277-87.


Differential phosphorylation controls Maskin association with eukaryotic translation initiation factor 4E and localization on the mitotic apparatus., Barnard DC, Cao Q, Richter JD., Mol Cell Biol. September 1, 2005; 25 (17): 7605-15.                


The stem-loop binding protein stimulates histone translation at an early step in the initiation pathway., Gorgoni B, Andrews S, Schaller A, Schümperli D, Gray NK, Müller B., RNA. July 1, 2005; 11 (7): 1030-42.


Symplekin and xGLD-2 are required for CPEB-mediated cytoplasmic polyadenylation., Barnard DC, Ryan K, Manley JL, Richter JD., Cell. November 24, 2004; 119 (5): 641-51.            


Two zebrafish eIF4E family members are differentially expressed and functionally divergent., Robalino J, Joshi B, Fahrenkrug SC, Jagus R., J Biol Chem. March 12, 2004; 279 (11): 10532-41.


The active form of Xp54 RNA helicase in translational repression is an RNA-mediated oligomer., Minshall N, Standart N., Nucleic Acids Res. February 24, 2004; 32 (4): 1325-34.


Large-scale induced fit recognition of an m(7)GpppG cap analogue by the human nuclear cap-binding complex., Mazza C, Segref A, Mattaj IW, Cusack S., EMBO J. October 15, 2002; 21 (20): 5548-57.


Free poly(A) stimulates capped mRNA translation in vitro through the eIF4G-poly(A)-binding protein interaction., Borman AM, Michel YM, Malnou CE, Kean KM., J Biol Chem. September 27, 2002; 277 (39): 36818-24.


Dissolution of the maskin-eIF4E complex by cytoplasmic polyadenylation and poly(A)-binding protein controls cyclin B1 mRNA translation and oocyte maturation., Cao Q, Richter JD., EMBO J. July 15, 2002; 21 (14): 3852-62.


Translational control of the embryonic cell cycle., Groisman I, Jung MY, Sarkissian M, Cao Q, Richter JD., Cell. May 17, 2002; 109 (4): 473-83.


Inhibition of translation and progesterone-induced maturation of Xenopus oocytes by expressing the amino-terminal portion of the eukaryotic translation initiation factor 4G., Wakiyama M, Miura K., Biosci Biotechnol Biochem. January 1, 2002; 66 (1): 185-7.


CPEB phosphorylation and cytoplasmic polyadenylation are catalyzed by the kinase IAK1/Eg2 in maturing mouse oocytes., Hodgman R, Tay J, Mendez R, Richter JD., Development. July 1, 2001; 128 (14): 2815-22.


Analysis of the isoform of Xenopus euakryotic translation initiation factor 4E., Wakiyama M, Suzuki A, Saigoh M, Sakai N, Miyoshi H, Kojima S, Miura K., Biosci Biotechnol Biochem. January 1, 2001; 65 (1): 232-5.


Translational regulation of the mRNA encoding the eukaryotic translation initiation factor 4E in Xenopus., Wakiyama M, Saigoh M, Ikeda K, Suzuki A, Miura K., Biosci Biotechnol Biochem. January 1, 2001; 65 (1): 229-31.


Controlled translation initiation on insulin-like growth factor 2-leader 1 during Xenopus laevis embryogenesis., van der Velden AW, Destrée OHJ, Voorma HO, Thomas AA., Int J Dev Biol. December 1, 2000; 44 (8): 843-50.


CPEB, maskin, and cyclin B1 mRNA at the mitotic apparatus: implications for local translational control of cell division., Groisman I, Huang YS, Mendez R, Cao Q, Theurkauf W, Richter JD., Cell. October 27, 2000; 103 (3): 435-47.        


Cap-dependent deadenylation of mRNA., Dehlin E, Wormington M, Körner CG, Wahle E., EMBO J. March 1, 2000; 19 (5): 1079-86.


Binding analysis of Xenopus laevis translation initiation factor 4E (eIF4E) in initiation complex formation., Miyoshi H, Youtani T, Ide H, Hori H, Okamoto K, Ishikawa M, Wakiyama M, Nishino T, Ishida T, Miura K., J Biochem. November 1, 1999; 126 (5): 897-904.


Cellular stress in xenopus kidney cells enhances the phosphorylation of eukaryotic translation initiation factor (eIF)4E and the association of eIF4F with poly(A)-binding protein., Fraser CS, Pain VM, Morley SJ., Biochem J. September 15, 1999; 342 Pt 3 519-26.


The association of initiation factor 4F with poly(A)-binding protein is enhanced in serum-stimulated Xenopus kidney cells., Fraser CS, Pain VM, Morley SJ., J Biol Chem. January 1, 1999; 274 (1): 196-204.


Disulfide bond formation is not involved in cap-binding activity of Xenopus translation initiation factor eIF-4E., Wakiyama M, Sakai N, Kojima S, Miura K., FEBS Lett. June 16, 1997; 409 (3): 407-10.


Studies on the phosphorylation of eIF4E in Xenopus (XIK-2) kidney cells., Fraser C, Morley S., Biochem Soc Trans. May 1, 1997; 25 (2): 190S.


Cap-independent translation initiation in Xenopus oocytes., Keiper BD, Rhoads RE., Nucleic Acids Res. January 15, 1997; 25 (2): 395-402.


Expression of Xenopus laevis translation initiation factor 4E (eIF-4E) by baculovirus-insect cell system., Miyoshi H, Ito K, Sakai N, Mizushima J, Okamoto K, Hori H, Nishino T, Wakiyama M, Miura K., Nucleic Acids Symp Ser. January 1, 1997; (37): 191-2.


Xenopus poly (A) binding protein maternal RNA is localized during oogenesis and associated with large complexes in blastula., Schroeder KE, Yost HJ., Dev Genet. January 1, 1996; 19 (3): 268-76.          


mRNA encoding the translation initiation factor eIF-4E is expressed early in Xenopus embryogenesis., Wakiyama M, Saigoh M, Shiokawa K, Miura K., FEBS Lett. February 27, 1995; 360 (2): 191-3.  

???pagination.result.page??? 1 2 ???pagination.result.next???