Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (66) GO Terms (9) Nucleotides (165) Proteins (55) Interactants (112) Wiki
XB--942357

Papers associated with npy



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Amphibian thalamic nuclear organization during larval development and in the adult frog Xenopus laevis: Genoarchitecture and hodological analysis., Morona R, Bandín S, López JM, Moreno N, González A., J Comp Neurol. October 1, 2020; 528 (14): 2361-2403.                                                                


Analysis of pallial/cortical interneurons in key vertebrate models of Testudines, Anurans and Polypteriform fishes., Jiménez S, López JM, Lozano D, Morona R, González A, Moreno N., Brain Struct Funct. September 1, 2020; 225 (7): 2239-2269.


Neuroendocrine modulation of predator avoidance/prey capture tradeoffs: Role of tectal NPY2R receptors., Islam R, Prater CM, Harris BN, Carr JA., Gen Comp Endocrinol. October 1, 2019; 282 113214.


Gene expression analysis of developing cell groups in the pretectal region of Xenopus laevis., Morona R, Ferran JL, Puelles L, González A., J Comp Neurol. March 1, 2017; 525 (4): 715-752.                                            


Regional expression of Pax7 in the brain of Xenopus laevis during embryonic and larval development., Bandín S, Morona R, Moreno N, González A., Front Neuroanat. December 24, 2013; 7 48.                    


The role of brain-derived neurotrophic factor in the regulation of cell growth and gene expression in melanotrope cells of Xenopus laevis., Jenks BG, Kuribara M, Kidane AH, Kramer BM, Roubos EW, Scheenen WJ., Gen Comp Endocrinol. July 1, 2012; 177 (3): 315-21.      


Characterization of the neuropeptide Y system in the frog Silurana tropicalis (Pipidae): three peptides and six receptor subtypes., Sundström G, Xu B, Larsson TA, Heldin J, Bergqvist CA, Fredriksson R, Conlon JM, Lundell I, Denver RJ, Larhammar D., Gen Comp Endocrinol. July 1, 2012; 177 (3): 322-31.                


Contexts for dopamine specification by calcium spike activity in the CNS., Velázquez-Ulloa NA, Spitzer NC, Dulcis D., J Neurosci. January 5, 2011; 31 (1): 78-88.                    


Plasticity of melanotrope cell regulations in Xenopus laevis., Roubos EW, Van Wijk DC, Kozicz T, Scheenen WJ, Jenks BG., Eur J Neurosci. December 1, 2010; 32 (12): 2082-6.    


About a snail, a toad, and rodents: animal models for adaptation research., Roubos EW, Jenks BG, Xu L, Kuribara M, Scheenen WJ, Kozicz T., Front Endocrinol (Lausanne). January 1, 2010; 1 4.      


Distribution pattern of neuropeptide Y in the brain, pituitary and olfactory system during the larval development of the toad Rhinella arenarum (Amphibia: Anura)., Heer T, Pozzi AG, Yovanovich CA, Paz DA., Anat Histol Embryol. April 1, 2009; 38 (2): 89-95.


Neuropeptides and thymic hormones in the Xenopus thymus., Silva AB, Aw D, Palmer DB., Front Biosci (Landmark Ed). January 1, 2009; 14 (6): 1990-2003.


Changes in Rx1 and Pax6 activity at eye field stages differentially alter the production of amacrine neurotransmitter subtypes in Xenopus., Zaghloul NA, Moody SA., Mol Vis. January 26, 2007; 13 86-95.        


Plasticity in the melanotrope neuroendocrine interface of Xenopus laevis., Jenks BG, Kidane AH, Scheenen WJ, Roubos EW., Neuroendocrinology. January 1, 2007; 85 (3): 177-85.


Effect of starvation on Fos and neuropeptide immunoreactivities in the brain and pituitary gland of Xenopus laevis., Calle M, Kozicz T, van der Linden E, Desfeux A, Veening JG, Barendregt HP, Roubos EW., Gen Comp Endocrinol. July 1, 2006; 147 (3): 237-46.        


Evolutionary conservation of neuropeptide expression in the thymus of different species., Silva AB, Aw D, Palmer DB., Immunology. May 1, 2006; 118 (1): 131-40.


Receptors for neuropeptide Y, gamma-aminobutyric acid and dopamine differentially regulate Ca2+ currents in Xenopus melanotrope cells via the G(i) protein beta/gamma-subunit., Zhang H, Roubos EW, Jenks BG, Scheenen WJ., Gen Comp Endocrinol. January 15, 2006; 145 (2): 140-7.


Central amygdala in anuran amphibians: neurochemical organization and connectivity., Moreno N, González A., J Comp Neurol. August 15, 2005; 489 (1): 69-91.


Low temperature stimulates alpha-melanophore-stimulating hormone secretion and inhibits background adaptation in Xenopus laevis., Tonosaki Y, Cruijsen PM, Nishiyama K, Yaginuma H, Roubos EW., J Neuroendocrinol. November 1, 2004; 16 (11): 894-905.


Roles of corticotropin-releasing factor, neuropeptide Y and corticosterone in the regulation of food intake in Xenopus laevis., Crespi EJ, Vaudry H, Denver RJ., J Neuroendocrinol. March 1, 2004; 16 (3): 279-88.


Novel neuropeptide Y Y2-like receptor subtype in zebrafish and frogs supports early vertebrate chromosome duplications., Fredriksson R, Larson ET, Yan YL, Postlethwait JH, Larhammar D., J Mol Evol. January 1, 2004; 58 (1): 106-14.


Demonstration of postsynaptic receptor plasticity in an amphibian neuroendocrine interface., Jenks BG, Ouwens DT, Coolen MW, Roubos EW, Martens GJ., J Neuroendocrinol. November 1, 2002; 14 (11): 843-5.


Regulation of neurons in the suprachiasmatic nucleus of Xenopus laevis., Kramer BM, Song JY, Westphal NJ, Jenks BG, Roubos EW., Comp Biochem Physiol B Biochem Mol Biol. May 1, 2002; 132 (1): 269-74.


Functional organization of the suprachiasmatic nucleus of Xenopus laevis in relation to background adaptation., Kramer BM, Welting J, Berghs CA, Jenks BG, Roubos EW., J Comp Neurol. April 9, 2001; 432 (3): 346-55.                    


Identification and characterization of two G protein-coupled receptors for neuropeptide FF., Bonini JA, Jones KA, Adham N, Forray C, Artymyshyn R, Durkin MM, Smith KE, Tamm JA, Boteju LW, Lakhlani PP, Raddatz R, Yao WJ, Ogozalek KL, Boyle N, Kouranova EV, Quan Y, Vaysse PJ, Wetzel JM, Branchek TA, Gerald C, Borowsky B., J Biol Chem. December 15, 2000; 275 (50): 39324-31.


Molecular evolution of the neuropeptide Y (NPY) family of peptides: cloning of three NPY-related peptides from the sea bass (Dicentrarchus labrax)., Cerdá-Reverter JM, Martínez-Rodríguez G, Zanuy S, Carrillo M, Larhammar D., Regul Pept. November 24, 2000; 95 (1-3): 25-34.


Zebrafish genes for neuropeptide Y and peptide YY reveal origin by chromosome duplication from an ancestral gene linked to the homeobox cluster., Söderberg C, Wraith A, Ringvall M, Yan YL, Postlethwait JH, Brodin L, Larhammar D., J Neurochem. September 1, 2000; 75 (3): 908-18.


Intrinsic bias and lineage restriction in the phenotype determination of dopamine and neuropeptide Y amacrine cells., Moody SA, Chow I, Huang S., J Neurosci. May 1, 2000; 20 (9): 3244-53.                


Neuropeptide Y receptor subtype with unique properties cloned in the zebrafish: the zYa receptor., Starbäck P, Lundell I, Fredriksson R, Berglund MM, Yan YL, Wraith A, Söderberg C, Postlethwait JH, Larhammar D., Brain Res Mol Brain Res. July 5, 1999; 70 (2): 242-52.


Endocrine pancreatic cells from Xenopus laevis: light and electron microscopic studies., Lozano MT, Hernández MP, Agulleiro B., Gen Comp Endocrinol. May 1, 1999; 114 (2): 191-205.


Identification of suprachiasmatic melanotrope-inhibiting neurons in Xenopus laevis: a confocal laser-scanning microscopy study., Ubink R, Tuinhof R, Roubos EW., J Comp Neurol. July 20, 1998; 397 (1): 60-8.          


Basal ganglia organization in amphibians: chemoarchitecture., Marín O, Smeets WJ, González A., J Comp Neurol. March 16, 1998; 392 (3): 285-312.                      


Regulation of K+ and Ca++ channels by a family of neuropeptide Y receptors., Sun L, Philipson LH, Miller RJ., J Pharmacol Exp Ther. February 1, 1998; 284 (2): 625-32.


Cloning and characterization of a novel neuropeptide Y receptor subtype in the zebrafish., Lundell I, Berglund MM, Starbäck P, Salaneck E, Gehlert DR, Larhammar D., DNA Cell Biol. November 1, 1997; 16 (11): 1357-63.


Background adaptation by Xenopus laevis: a model for studying neuronal information processing in the pituitary pars intermedia., Roubos EW., Comp Biochem Physiol A Physiol. November 1, 1997; 118 (3): 533-50.


Sauvagine and TRH differentially stimulate proopiomelanocortin biosynthesis in the Xenopus laevis intermediate pituitary., Dotman CH, Maia A, Jenks BG, Roubos EW., Neuroendocrinology. August 1, 1997; 66 (2): 106-13.


Differential action of secreto-inhibitors on proopiomelanocortin biosynthesis in the intermediate pituitary of Xenopus laevis., Dotman CH, Cruijsen PM, Jenks BG, Roubos EW., Endocrinology. November 1, 1996; 137 (11): 4551-7.


Calcium oscillations in melanotrope cells of Xenopus laevis are differentially regulated by cAMP-dependent and cAMP-independent mechanisms., Lieste JR, Scheenen WJ, Willems PH, Jenks BG, Roubos EW., Cell Calcium. October 1, 1996; 20 (4): 329-37.


Neuropeptide Y: localization in the brain and pituitary of the developing frog (Rana esculenta)., D'Aniello B, Vallarino M, Pinelli C, Fiorentino M, Rastogi RK., Cell Tissue Res. August 1, 1996; 285 (2): 253-9.


Secretogranin III is a sulfated protein undergoing proteolytic processing in the regulated secretory pathway., Holthuis JC, Jansen EJ, Martens GJ., J Biol Chem. July 26, 1996; 271 (30): 17755-60.


Identification of a protein that confers calcitonin gene-related peptide responsiveness to oocytes by using a cystic fibrosis transmembrane conductance regulator assay., Luebke AE, Dahl GP, Roos BA, Dickerson IM., Proc Natl Acad Sci U S A. April 16, 1996; 93 (8): 3455-60.


Coexpression with potassium channel subunits used to clone the Y2 receptor for neuropeptide Y., Rimland JM, Seward EP, Humbert Y, Ratti E, Trist DG, North RA., Mol Pharmacol. March 1, 1996; 49 (3): 387-90.


Involvement of G-protein alpha il subunits in activation of G-protein gated inward rectifying K+ channels (GIRK1) by human NPY1 receptors., Brown NA, McAllister G, Weinberg D, Milligan G, Seabrook GR., Br J Pharmacol. November 1, 1995; 116 (5): 2346-8.


Asymmetrical blastomere origin and spatial domains of dopamine and neuropeptide Y amacrine subtypes in Xenopus tadpole retina., Huang S, Moody SA., J Comp Neurol. September 25, 1995; 360 (3): 442-53.


Cloning and sequence analysis of a neuropeptide Y/peptide YY receptor Y1 cDNA from Xenopus laevis., Blomqvist AG, Roubos EW, Larhammar D, Martens GJ., Biochim Biophys Acta. April 26, 1995; 1261 (3): 439-41.


Neuropeptide Y inhibits Ca2+ oscillations, cyclic AMP, and secretion in melanotrope cells of Xenopus laevis via a Y1 receptor., Scheenen WJ, Yntema HG, Willems PH, Roubos EW, Lieste JR, Jenks BG., Peptides. January 1, 1995; 16 (5): 889-95.


Neuropeptide Y in the developing and adult brain of the South African clawed toad Xenopus laevis., Tuinhof R, González A, Smeets WJ, Roubos EW., J Chem Neuroanat. October 1, 1994; 7 (4): 271-83.


Central control of melanotrope cells of Xenopus laevis., Tuinhof R, González A, Smeets WJ, Scheenen WJ, Roubos EW., Eur J Morphol. August 1, 1994; 32 (2-4): 307-10.


Action of stimulatory and inhibitory alpha-MSH secretagogues on spontaneous calcium oscillations in melanotrope cells of Xenopus laevis., Scheenen WJ, Jenks BG, Willems PH, Roubos EW., Pflugers Arch. June 1, 1994; 427 (3-4): 244-51.


Isolation and characterization of the Xenopus laevis cDNA and genomic homologs of neuropeptide Y., Griffin D, Minth CD, Taylor WL., Mol Cell Endocrinol. May 1, 1994; 101 (1-2): 1-10.

???pagination.result.page??? 1 2 ???pagination.result.next???