Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Search Criteria
Gene/CloneSpeciesStageAnatomy ItemExperimenter
sox17b.1xenopus   

Too many results?Too few results?

Experiment details for sox17b.1

Coco regulates dorsoventral specification of germ layers via inhibition of TGFβ signalling.

Coco regulates dorsoventral specification of germ layers via inhibition of TGFβ signalling.

Gene Clone Species Stages Anatomy
sox17b.1.S laevis NF stage 9 to NF stage 10 endoderm , vegetal yolk mass , vegetal endoderm

Display additional annotations [+]
  Fig. 2. Knockdown of Coco causes germ layer defects at blastula stage. (A-M) Xenopus embryos were injected with either CocoMO or ControlMO and analysed at stage 9.5. Whole-mount in situ hybridisation was performed to identify endoderm (Sox17β), mesoderm (Xbra) and presumptive dorsal tissue (Chordin). Injection of CocoMO causes both a shift in Sox17β expression (A-C, arrowheads; using the blastocoel floor as a reference this shift is clearly seen in sections shown in A′,B′) and an upregulation of expression (D; compare RT-PCR of uninjected embryo and CocoMO-injected embryo). CocoMO-injected embryos were additionally injected with β-Gal in either a dorsal or ventral blastomere at the four-cell stage. Compared with an uninjected control (E, arrows) the shift of Sox17β expression is on the same side as dorsally injected β-Gal (F) but on the opposite side as ventrally injected β-Gal (G). Loss of Coco also caused a reduction of both Xbra (H-J′, arrows) and Chordin (K-M, arrowheads) expression, effects that are not seen following ControlMO injections. The shift of Sox17β expression following CocoMO injection (N,O, arrows) is rescued with an injection of Coco mRNA (P), demonstrating specificity. A-C,E-J,K-P are whole-mount lateral views and A′-B′;H′-J′ are sagittal sections.