Xenbase is experiencing technical problems. Users may experience limited functionality. We are working to rectify these issues.

Click on this message to dismiss it.
Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-37178
Cell Physiol Biochem 2008 Jan 01;211-3:47-54. doi: 10.1159/000113746.
Show Gene links Show Anatomy links

KCNE3 mutation V17M identified in a patient with lone atrial fibrillation.

Lundby A , Ravn LS , Svendsen JH , Hauns S , Olesen SP , Schmitt N .


???displayArticle.abstract???
BACKGROUND: Atrial fibrillation (AF) is the most common cardiac rhythm disorder with a lifetime risk for development of 25% for people aged 40 or older. In this study we aim for the functional assessment of a mutation in KCNE3 identified in a proband with early-onset lone AF. METHODS: Screening of genomic DNA from the proband led to identification of a KCNE3 V17M missense mutation. We heterologously expressed the accessory channel subunit in Xenopus laevis oocytes together with its known interacting potassium channel alpha-subunits. Further, we applied RT-PCR on human total RNA from left and right atria and ventricle. RESULTS: Electrophysiological recordings revealed an increased activity of Kv4.3/KCNE3 and Kv11.1/KCNE3 generated currents by the mutation, thereby conferring susceptibility of mutation carriers to faster cardiac action potential repolarization and thus vulnerability to re-entrant wavelets in the atria and thereby AF. CONCLUSION: Here we report a novel mutation in KCNE3 identified in a proband with early-onset lone AF possibly leading to gain-of-function of several cardiac currents. We suggest abnormalities in the KCNE3 gene as a potential genetic risk factor for initiation and/or maintenance of AF.

???displayArticle.pubmedLink??? 18209471
???displayArticle.link??? Cell Physiol Biochem


Species referenced: Xenopus laevis
Genes referenced: kcne3