Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-10243
Brain Res Brain Res Rev 2000 Sep 01;332-3:179-98. doi: 10.1016/s0165-0173(00)00029-1.
Show Gene links Show Anatomy links

Chemoarchitecture of the anuran auditory midbrain.

Endepols H , Walkowiak W , Luksch H .


???displayArticle.abstract???
The anuran torus semicircularis consists of several subnuclei that are part of the ascending auditory pathway as well as audiomotor interface structures. Additionally, recent anatomical studies suggest that the midbrain tegmentum is an integral part of the audiomotor network. To describe the chemoarchitecture of these nuclei, taking into account the toral subdivisions, we investigated the distribution of serotonin, leucine-enkephalin, substance P, tyrosine-hydroxylase, dopamine D2-receptor, parvalbumin, aspartate, GABA, and estrogen-binding protein-immunoreactivity in the midbrain of Bombina orientalis, Discoglossus pictus and Xenopus laevis. In the torus semicircularis, the highest density of immunoreactive fibers and terminals for all transmitters was found in the laminar nucleus. Parvalbumin-like immunoreactivity was highest in the principal nucleus, and D2-receptor-like immunoreactivity was uniformly distributed throughout the torus. In the tegmentum, axons and/or dendrites were stained with all antibodies except estrogen-binding protein. Additionally, heavily stained enkephalin and substance P-immunopositive fiber plexus were found in the lateral and dorsal tegmentum. The immunostainings revealed no qualitative differences between the three species. Immunopositive cell bodies were labeled in several brain areas, the connectivity of which with torus and tegmentum is discussed on the background of functional questions. The putative neuromodulatory innervation of both the laminar nucleus of the torus semicircularis and the tegmentum may be the anatomical basis for the influence of the animal's endogenous state on the behavioral reaction to sensory stimuli. These data corroborate earlier anatomical and physiological findings that the neurons of these nuclei are key elements in the audio-motor interface.

???displayArticle.pubmedLink??? 11011065
???displayArticle.link??? Brain Res Brain Res Rev


Species referenced: Xenopus laevis
Genes referenced: ocm3 ocm4.5