Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-10764
J Biol Chem 2000 Oct 13;27541:32027-36. doi: 10.1074/jbc.M000108200.
Show Gene links Show Anatomy links

Cloning and functional characterization of a cation-Cl- cotransporter-interacting protein.

Caron L , Rousseau F , Gagnon E , Isenring P .


???displayArticle.abstract???
To date, the cation-Cl(-) cotransporter (CCC) family comprises two branches of homologous membrane proteins. One branch includes the Na(+)-K(+)-Cl(-) cotransporters (NKCCs) and the Na(+)-Cl(-) cotransporter, and the other branch includes the K(+)-Cl(-) cotransporters. Here, we have isolated the first member of a third CCC family branch. This member shares approximately 25% identity in amino acid sequence with each of the other known mammalian CCCs. The corresponding cDNA, obtained from a human heart library and initially termed WO(3.3), encodes a 914-residue polypeptide of 96.2 kDa (calculated mass). Sequence analyses predict a 12-transmembrane domain (tm) region, two N-linked glycosylation sites between tm(5) and tm(6), and a large intracellular carboxyl terminus containing protein kinase C phosphorylation sites. Northern blot analysis uncovers an approximately 3.7-kilobase pair transcript present in muscle, placenta, brain, and kidney. With regard to function, WO(3. 3) expressed either in HEK-293 cells or Xenopus laevis oocytes does not increase Rb(+)-, Na(+)-, and Cl(-)-coupled transport during 5- or 6-h fluxes, respectively. In the oocyte, however, WO(3.3) specifically inhibits human NKCC1-mediated (86)Rb(+) flux. In addition, coimmunoprecipitation studies using lysates from WO(3. 3)-transfected HEK-293 cells suggest a direct interaction of WO(3.3) with endogenous NKCC. Thus, we have cloned and characterized the first putative heterologous CCC-interacting protein (CIP) known at present. CIP1 may be part of a novel family of proteins that modifies the activity or kinetics of CCCs through heterodimer formation.

???displayArticle.pubmedLink??? 10871601
???displayArticle.link??? J Biol Chem


Species referenced: Xenopus laevis
Genes referenced: cdkn1a slc12a2