Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-13334
J Exp Biol April 1, 1999; 202 (Pt 8) 997-1003.

Inhibitory and excitatory responses of olfactory receptor neurons of xenopus laevis tadpoles to stimulation with amino acids

Vogler C , Schild D .


Abstract
Recordings were made from olfactory receptor neurons of Xenopus laevis tadpoles using the patch-clamp technique to investigate the responses of these cells to odorants. Four amino acids (glutamate, methionine, arginine and alanine) both individually and as a mixture were used as stimuli. Of the 156 olfactory neurons tested, 43 showed a response to at least one of the stimuli. Of the cells tested, 19 % responded to glutamate, 16 % to methionine, 12 % to arginine and 10 % to alanine. Each amino acid was able to induce both excitatory and inhibitory responses, although these occurred in different cells. Each amino acid produced approximately equal numbers of inhibitory and excitatory responses. Inhibitory responses could best be observed in the perforated-patch configuration using gramicidin as an ionophore and a recording configuration that is a current-clamp for fast signals and a voltage-clamp for slow signals. The diversity of the odorant responses, in particular the existence of excitatory and inhibitory responses, is not consistent with a single transduction pathway in olfactory neurons of Xenopus laevis tadpoles.

PubMed ID: 10085272
Article link: J Exp Biol