Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-13612
Dev Biol 1999 Feb 01;2061:1-14. doi: 10.1006/dbio.1998.9131.
Show Gene links Show Anatomy links

Translational recruitment of Xenopus maternal mRNAs in response to poly(A) elongation requires initiation factor eIF4G-1.

Keiper BD , Rhoads RE .


???displayArticle.abstract???
Xenopus oocytes accumulate maternal mRNAs which are then recruited to ribosomes during meiotic cell cycle progression in response to progesterone and coincident with poly(A) elongation. Prior to stimulation, most protein synthesis ( approximately 70%) does not require intact translation factor eIF4G (B. D. Keiper and R. E. Rhoads, 1997, Nucleic Acids Res. 25, 395-402). In the present study we have addressed the requirement of eIF4G in the recruitment of mRNAs during meiosis. Cleavage of eIF4G by coxsackievirus protease 2A inhibited progesterone-induced meiotic progression in 88% of the oocytes; prevented the recruitment of maternal mRNAs encoding cyclin B1, c-Mos, D7, and B9; and disrupted the association of eIF4G with poly(A)-binding protein. Poly(A) elongation, however, was not inhibited by eIF4G cleavage. Injection of MPF restored meiotic cell cycle progression to >60% of the oocytes but not the recruitment of cyclin B1 or B9 mRNA. Previously recruited maternal mRNAs were removed from polyribosomes following subsequent cleavage of eIF4G, indicating that eIF4G is required both to recruit and also to maintain maternal mRNAs on polyribosomes. The expression of a cleavage-resistant variant of human eIF4G-1 (G486E) significantly restored the ability to synthesize c-Mos in response to progesterone and to translate exogenous beta-globin mRNA, indicating that the inhibition by protease 2A is due to cleavage of eIF4G alone. These results indicate that intact eIF4G is required for the poly(A)-dependent recruitment of several maternal mRNAs (cyclin B1, c-Mos, D7, and B9) during meiotic cell cycle progression but not for the synthesis of most proteins.

???displayArticle.pubmedLink??? 9918691
???displayArticle.link??? Dev Biol
???displayArticle.grants??? [+]

Species referenced: Xenopus
Genes referenced: eif4g1 mos