Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-14527
Vis Neurosci 1998 Jan 01;153:499-502.
Show Gene links Show Anatomy links

Spectral sensitivity of melatonin synthesis suppression in Xenopus eyecups.

Cahill GM , Parsons SE , Besharse JC .


???displayArticle.abstract???
Melatonin synthesis in retinal photoreceptors is stimulated at night by a circadian oscillator and suppressed acutely by light. To identify photoreceptor mechanisms involved in the acute suppression of melatonin synthesis, an action spectrum was measured for dark-adapted Xenopus laevis eyecups at night. Intensity-response curves at six wavelengths from 400 to 650 nm were parallel, suggesting that a single photopigment predominates in melatonin suppression. Half-saturating intensities at 400, 440, 480, and 533 nm were not significantly different from one another, at 1-2 x 10(8) quanta cm(-2) s(-1). Significantly higher intensities of 580- and 650-nm light were required for melatonin suppression. These results indicate a predominant role for the principal green-absorbing rods in acute regulation of retinal melatonin synthesis in response to light, and argue against an important role for the red-absorbing cones. Higher than expected sensitivity at short wavelengths suggests that photoreceptors sensitive to blue and/or violet light may also contribute to melatonin suppression.

???displayArticle.pubmedLink??? 9685202
???displayArticle.link??? Vis Neurosci
???displayArticle.grants??? [+]