Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-15619
Brain Res Mol Brain Res 1997 Nov 01;511-2:115-22. doi: 10.1016/s0169-328x(97)00225-8.
Show Gene links Show Anatomy links

Efficient coupling of 5-HT1a receptors to the phospholipase C pathway in Xenopus oocytes.

Ni YG , Panicker MM , Miledi R .


???displayArticle.abstract???
To investigate the receptor-channel coupling pathway, the coding region of the 5-HT1a receptor was subcloned into two plasmid vectors pSP64(polyA+) and pSP64T. Compared to the original 5-HT1a receptor construct G-21, both new constructs increased greatly the expression of functional 5-HT1a receptors in Xenopus oocytes, which developed large inward current responses to 5-HT. These responses were dose-dependent (EC50 approximately 150 nM), and could be elicited also by 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT). The 5-HT1a receptor mediated current had an oscillatory time course, and a reversal potential close to the equilibrium potential for Cl- (ca. -25 mV). Moreover, during and for some minutes following the application of 5-HT, these oocytes acquired the property of generating a transient inward current when their membrane was hyperpolarized. These features are characteristic of responses mediated by other receptors (e.g. muscarinic, angiotensin, serum receptors, etc.) that are known to couple to the endogenous PLC/PI second messenger pathway in Xenopus oocytes. In particular, the 5-HT1a receptor mediated current was very similar to the current induced by 5-HT-stimulation of heterogenic 5-HT2c receptors. Our results show further that the 5-HT1a receptor couples to the endogenous PLC/PI pathway much less efficiently than the 5-HT2c receptor. These results demonstrate clearly that the human 5-HT1a receptor can couple efficiently to the Xenopus oocyte endogenous PLC/PI pathway, and provide additional evidence for cell-specific signal transduction.

???displayArticle.pubmedLink??? 9427513
???displayArticle.link??? Brain Res Mol Brain Res
???displayArticle.grants??? [+]

Species referenced: Xenopus
Genes referenced: htr1a htr2c