Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-1629
Dev Growth Differ June 1, 2005; 47 (5): 283-94.

Midblastula transition (MBT) of the cell cycles in the yolk and pigment granule-free translucent blastomeres obtained from centrifuged Xenopus embryos.

Iwao Y , Uchida Y , Ueno S , Yoshizaki N , Masui Y .


Abstract
We obtained translucent blastomeres free of yolk and pigment granules from Xenopus embryos which had been centrifuged at the beginning of the 8-cell stage with cellular integrity. They divided synchronously regardless of their cell size until they had decreased to 37.5 microm in radius; those smaller than this critical size, however, divided asynchronously with cell cycle times inversely proportional to the square of the cell radius after midblastula transition (MBT). The length of the S phase was determined as the time during which nuclear DNA fluorescence increased in Hoechst-stained blastomeres. When the cell cycle time exceeded 45 min, S and M phases were lengthened; when the cell cycle times exceeded 70 min, the G2 phase appeared; and after cell cycle times became longer than 150 min, the G1 phase appeared. Lengths of G1, S and M phases increased linearly with increasing cell cycle time. Enhanced green fluorescent protein (EGFP)-tagged proliferating cell nuclear antigen (PCNA) expressed in the blastomeres appeared in the S phase nucleus, but suddenly dispersed into the cytoplasm at the M phase. The system developed in this study is useful for examining the cell cycle behavior of the cell cycle-regulating molecules in living Xenopus blastomeres by fluorescence microscopy in real time.

PubMed ID: 16026537
Article link: Dev Growth Differ


Species referenced: Xenopus laevis
Genes referenced: pcna