Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-1761
Physiol Biochem Zool 2005 Jan 01;784:515-23. doi: 10.1086/430688.
Show Gene links Show Anatomy links

Functional roles for the compartmentalization of the subcutaneous lymphatic sacs in anuran amphibians.

Hillman SS , Withers PC , Hedrick MS , Drewes RC .


???displayArticle.abstract???
Compliance of the subcutaneous lymph sacs of the hindlimbs increases from distal to proximal, as does limb segment mass (and presumably rate of lymph formation), for the semiaquatic bullfrog Rana catesbeiana and the cane toad Bufo marinus but not the aquatic clawed toad Xenopus laevis. Subcutaneous lymph-sac compliances vary interspecifically. The distal-to-proximal increase in lymph-sac compliance and estimates of lymph formation rate in the various hindlimb segments indicate that partitioning of hindlimb subcutaneous lymphatic sacs establishes a differential decrease in the intra-lymph-sac pressure for R. catesbeiana and B. marinus. These pressure differentials constitute a "compliance pump" that drives distal-to-proximal intersac lymph flow. The compliance pump alone explains lymphatic return for the aquatic frog X. laevis but does not explain how lymph would reach the dorsally located lymph hearts for terrestrial anurans, so we hypothesize that skeletal muscle pumps return lymph from the femoral and pubic lymph sacs to the lymph heart. This is a fundamentally different role of the subcutaneous lymph-sac system than has been previously proposed. We suggest that the more proximal subcutaneous lymph sacs are important for fluid storage because they have a relatively high compliance.

???displayArticle.pubmedLink??? 15957106
???displayArticle.link??? Physiol Biochem Zool


Species referenced: Xenopus laevis
Genes referenced: sacs