Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-17815
Dev Biol 1996 Aug 25;1781:77-89. doi: 10.1006/dbio.1996.0199.
Show Gene links Show Anatomy links

Role of HB-GAM (heparin-binding growth-associated molecule) in proliferation arrest in cells of the developing rat limb and its expression in the differentiating neuromuscular system.

Szabat E , Rauvala H .


???displayArticle.abstract???
HB-GAM (heparin-binding growth-associated molecule) is a secretory, extracellular matrix-associated protein that was isolated by screening for proteins that enhance neurite outgrowth in perinatal rat brain neurons. In the present study we have investigated the possible role of HB-GAM in cell proliferation in the developing rat limb. Exogenously added recombinant HB-GAM was found to inhibit the proliferation of mesenchymal and epithelial cells in cultured limb buds, as demonstrated by bromodeoxyuridine incorporation and by staining for PCNA (proliferating cell nuclear antigen). The inhibitory effect of HB-GAM on cell proliferation was reversed by heparin, suggesting that HB-GAM may bind to a heparin-type carbohydrate epitope that is required for cell proliferation in the developing limb. Endogenous HB-GAM of the developing limb was found to be expressed in a proximal-to-distal pattern, in agreement with the putative role in proliferation arrest and cell differentiation. In addition, double immunostaining of HB-GAM with PCNA showed that in early (Embryonic Day 12) limb mesenchyme HB-GAM was associated mainly with the surface of growth-arrested cells. Furthermore, HB-GAM was associated with the muscle surface, as demonstrated in double immunostaining of HB-GAM with desmin and myosin heavy chain proteins. Coinciding with the onset of synapse formation (Embryonic Day 16), HB-GAM was found in patches on the muscle cell surface in close proximity to nicotinic acetylcholine receptor clusters. This finding is in agreement with a previous study that has suggested a role for HB-GAM in the differentiation of the neuromuscular junction in Xenopus muscle.

???displayArticle.pubmedLink??? 8812110
???displayArticle.link??? Dev Biol
???displayArticle.grants??? [+]

Species referenced: Xenopus
Genes referenced: pcna