Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-20063
RNA March 1, 1995; 1 (1): 64-78.

Poly (A) polymerases in the nucleus and cytoplasm of frog oocytes: dynamic changes during oocyte maturation and early development.

Ballantyne S , Bilger A , Astrom J , Virtanen A , Wickens M .


Abstract
Poly(A) can be added to mRNAs both in the nucleus and in the cytoplasm. During oocyte maturation and early embryonic development, cytoplasmic polyadenylation of preexisting mRNAs provides a common mechanism of translational control. In this report, to begin to understand the regulation of polyadenylation activities during early development, we analyze poly (A) polymerases (PAPs) in oocytes and early embryos of the frog, Xenopus laevis. We have cloned and sequenced a PAP cDNA that corresponds to a maternal mRNA present in frog oocytes. This PAP is similar in size and sequence to mammalian nuclear PAPs. By immunoblotting using monoclonal antibodies raised against human PAP, we demonstrate that oocytes contain multiple forms of PAP that display different electrophoretic mobilities. The oocyte nucleus contains primarily the slower migrating forms of PAP, whereas the cytoplasm contains primarily the faster migrating species. The nuclear forms of PAP are phosphorylated, accounting for their retarded mobility. During oocyte maturation and early postfertilization development, preexisting PAPs undergo regulated phosphorylation and dephosphorylation events. Using the cloned PAP cDNA, we demonstrate that the complex changes in PAP forms seen during oocyte maturation may be due to modifications of a single polypeptide. These results demonstrate that the oocyte contains a cytoplasmic polymerase closely related to the nuclear enzyme and suggest models for how its activity may be regulated during early development.

PubMed ID: 7489490
PMC ID: PMC1369061
Article link: RNA
Grant support: [+]