Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-22897
Anat Embryol (Berl) 1993 Feb 01;1872:193-201. doi: 10.1007/bf00171750.
Show Gene links Show Anatomy links

Distribution of tyrosine hydroxylase and dopamine immunoreactivities in the brain of the South African clawed frog Xenopus laevis.

González A , Tuinhof R , Smeets WJ .


???displayArticle.abstract???
The distribution of dopamine (DA) and the biosynthetic enzyme tyrosine hydroxylase (TH) has been studied immunohistochemically in the brain of the adult South African clawed frog, Xenopus laevis. The goals of the present study are, firstly, to provide detailed information on the DA system of the brain of a species which is commonly used in laboratories as an experimental model and, secondly, to enhance our insight into primitive and derived characters of this catecholaminergic system in amphibians. Dopamine-immunoreactive cell bodies are present in the olfactory bulb, the preoptic area, the suprachiasmatic nucleus, the nucleus of the periventricular organ and its accompanying cells, the nucleus of the posterior tubercle, the posterior thalamic nucleus, the midbrain tegmentum, around the solitary tract, in the ependymal layer along the midline of the caudal rhombencephalon, and along the central canal of the spinal cord. In contrast to the DA antiserum, the TH antiserum fails to stain the liquor-contacting cells in the periventricular organ. On the contrary, the latter antiserum reveals additional immunoreactive cell bodies in the olfactory bulb, the isthmic region and the caudal brainstem. Both antisera yield an almost identical distribution of fibers. Distinct fiber plexuses are observed in the olfactory bulb, the basal forebrain, the hypothalamus and the intermediate lobe of the hypophysis. Features that Xenopus shares with other anurans are the larger number of DAi cells, which are generally smaller in size than those observed in urodeles, and the lack of DAi fibers in pallial structures. On the other hand, the paired midbrain DA cell group and the innervation of the tectum of Xenopus resemble those found in the newt rather than those in frogs. Despite the existence of these species differences, the brain of Xenopus offers an excellent model for studying general aspects of neurotransmitter interactions and the development of catecholamine systems in this class of vertebrates.

???displayArticle.pubmedLink??? 7902028
???displayArticle.link??? Anat Embryol (Berl)


Species referenced: Xenopus laevis
Genes referenced: th

References [+] :
Brauth, Catecholamine neurons in the brainstem of the reptile Caiman crocodilus. 1988, Pubmed