Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-23507
Eur J Cell Biol 1992 Aug 01;582:319-30.
Show Gene links Show Anatomy links

Assembly of a tail-less mutant of the intermediate filament protein, vimentin, in vitro and in vivo.

Eckelt A , Herrmann H , Franke WW .


???displayArticle.abstract???
Recent reports on the possible contribution of the non-alpha-helical carboxy-terminal domain ("tail") of type III intermediate filament (IF) proteins to IF assembly have been controversial. To examine the importance and role of this domain, we have therefore engineered a Xenopus laevis vimentin cDNA to code for a tail-less polypeptide and have used it in combination with prokaryotic and eukaryotic expression systems. Here we show that tail-less vimentin, isolated from transfected bacteria (Escherichia coli), when used for assembly in vitro, forms normal-looking, loosely packed IFs. By viscometry we demonstrate that this tail-less vimentin assembles at an even higher rate and into longer IFs than wild-type vimentin. In vivo, i.e., by forced expression in transfected type III IF-free cultured epithelial cells, tail-less vimentin was also recovered in short fibrillar structures, in rodlets and in small as well as large spheroidal aggregates ("granules") that did not reveal any IF substructure. Surprisingly, however, spheroidal aggregate structures formed from the tail-deleted vimentin, were seen not only in the cytoplasm but also in the nucleus, indicating a role of the tail in higher order organization and compartmentalization of the vimentin IF system.

???displayArticle.pubmedLink??? 1425769



Species referenced: Xenopus laevis
Genes referenced: vim