Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-25491
Development 1990 Nov 01;1103:865-74.
Show Gene links Show Anatomy links

Inhibition of proteoglycan synthesis eliminates left-right asymmetry in Xenopus laevis cardiac looping.

Yost HJ .


???displayArticle.abstract???
The heart of any vertebrate is formed from an apparently symmetric cardiac tube that loops consistently in the same direction along the left-right axis of the embryo. In the amphibian Xenopus laevis, inhibition of proteoglycan synthesis by p-nitrophenyl-beta-D-xylopyranoside during a narrow period of development from late gastrula to early neurula specifically eliminated the looping of the cardiac tube. Most of the proteoglycans synthesized during this period were heparan sulfate proteoglycans. Treatment with p-nitrophenyl-alpha-D-xylopyranoside, an analogue that does not inhibit proteoglycan synthesis, did not interfere with cardiac looping. The critical period for proteoglycan synthesis was coincident with the migration of cardiac primordia to the ventral midline. The inhibition of cardiac looping was further explored in explants of cardiac primordia and anterioventral ectoderm. In recombinate embryos in which half the embryo, and thus one of the two heart primordia, was treated with p-nitrophenyl-beta-D-xylopyranoside, and the other half was untreated, cardiac looping occurred normally. It is proposed that the left-right axis in Xenopus, as reflected in cardiac looping, is established early in development, and that proteoglycan synthesis is involved in the transduction of left-right axial information to the cardiac primordia during migration.

???displayArticle.pubmedLink??? 2100995

???displayArticle.grants??? [+]

Species referenced: Xenopus laevis
???displayArticle.antibodies??? Somite Ab2