Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-25510
Mol Cell Biol November 1, 1990; 10 (11): 5634-45.

Maturation-specific polyadenylation and translational control: diversity of cytoplasmic polyadenylation elements, influence of poly(A) tail size, and formation of stable polyadenylation complexes.

Paris J , Richter JD .


Abstract
Early embryonic development in Xenopus laevis is programmed in part by maternally derived mRNAs, many of which are translated at the completion of meiosis (oocyte maturation). Polysomal recruitment of at least one of these mRNAs, G10, is regulated by cytoplasmic poly(A) elongation which, in turn, is dependent upon the cytoplasmic polyadenylation element (CPE) UUUUUUAUAAAG and the hexanucleotide AAUAAA (L. L. McGrew, E. Dworkin-Rastl, M. B. Dworkin, and J. D. Richter, Genes Dev. 3:803-815, 1989). We have investigated whether sequences similar to the G10 RNA CPE that are present in other RNAs could also be responsible for maturation-specific polyadenylation. B4 RNA, which encodes a histone H1-like protein, requires a CPE of the sequence UUUUUAAU as well as the polyadenylation hexanucleotide. The 3'' untranslated regions of Xenopus c-mos RNA and mouse HPRT RNA also contain U-rich CPEs since they confer maturation-specific polyadenylation when fused to Xenopus B-globin RNA. Polyadenylation of B4 RNA, which occurs very early during maturation, is limited to 150 residues, and it is this number that is required for polysomal recruitment. To investigate the possible diversity of factors and/or affinities that might control polyadenylation, egg extracts that faithfully adenylate exogenously added RNA were used in competition experiments. At least one factor is shared by B4 and G10 RNAs, although it has a much greater affinity for B4 RNA. Additional experiments demonstrate that an intact CPE and hexanucleotide are both required to compete for the polyadenylation apparatus. Gel mobility shift assays show that two polyadenylation complexes are formed on B4 RNA. Optimal complex formation requires an intact CPE and hexanucleotide but not ongoing adenylation. These data, plus additional RNA competition studies, suggest that stable complex formation is enhanced by an interaction of the trans-acting factors that bind the CPE and polyadenylation hexanucleotide.

PubMed ID: 1700272
PMC ID: PMC361324
Article link: Mol Cell Biol


Species referenced: Xenopus
Genes referenced: bud31 hprt1 mos

References [+] :
Colot, Behavior of individual maternal pA+ RNAs during embryogenesis of Xenopus laevis. 1983, Pubmed, Xenbase