Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Dev Biol August 1, 1990; 140 (2): 328-36.

The restriction of the heart morphogenetic field in Xenopus laevis.

We have examined the spatial restriction of heart-forming potency in Xenopus laevis embryos, using an assay system in which explants or explant recombinates are cultured in hanging drops and scored for the formation of a beating heart. At the end of neurulation at stage 20, the heart morphogenetic field, i.e., the area that is capable of heart formation when cultured in isolation, includes anterior ventral and ventrolateral mesoderm. This area of developmental potency does not extend into more posterior regions. Between postneurula stage 23 and the onset of heart morphogenesis at stage 28, the heart morphogenetic field becomes spatially restricted to the anterior ventral region. The restriction of the heart morphogenetic field during postneurula stages results from a loss of developmental potency in the lateral mesoderm, rather than from ventrally directed morphogenetic movements of the lateral mesoderm. This loss of potency is not due to the inhibition of heart formation by migrating neural crest cells. During postneurula stages, tissue interactions between the lateral mesoderm and the underlying anterior endoderm support the heart-forming potency in the lateral mesoderm. The lateral mesoderm loses the ability to respond to this tissue interaction by stages 27-28. We speculate that either formation of the third pharyngeal pouch during stages 23-27 or lateral inhibition by ventral mesoderm may contribute to the spatial restriction of the heart morphogenetic field.

PubMed ID: 2373257
Article link: Dev Biol