Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-26097
J Neurochem 1990 Feb 01;542:716-9. doi: 10.1111/j.1471-4159.1990.tb01932.x.
Show Gene links Show Anatomy links

Circadian regulation of melatonin in the retina of Xenopus laevis: limitation by serotonin availability.

Cahill GM , Besharse JC .


???displayArticle.abstract???
Treatments expected to increase retinal serotonin levels were found to stimulate melatonin production by cultured eyecups from Xenopus laevis. The monoamine oxidase inhibitor pargyline (100 microM) caused a sixfold increase in melatonin release, and the serotonin precursor 5-hydroxy-L-tryptophan (100 microM) caused a 70-fold increase. Both acted synergistically with eserine, an inhibitor of melatonin deacetylation in the retina. The effect of 5-hydroxytryptophan was dose dependent, with effects increasing from 1 to 100 microM. Increasing the tryptophan level in the culture medium had no effect on melatonin release. These results indicate that the rate-limiting step in retinal melatonin synthesis is 5-hydroxylation of tryptophan. Melatonin released from individual eyecups in superfusion culture in constant darkness with and without added 5-hydroxy-L-tryptophan was monitored over a 5-day period. Control eyecups released low levels of melatonin, with circadian rhythmicity persisting for 1-3 days. With 5-hydroxy-L-tryptophan added, melatonin levels were elevated 10-20-fold at all times, and rhythmicity was apparent for as long as five cycles. This provides a model system for studies of the circadian clock in the eye.

???displayArticle.pubmedLink??? 2299362
???displayArticle.link??? J Neurochem
???displayArticle.grants??? [+]

Species referenced: Xenopus laevis
Genes referenced: clock