Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-26637
J Biol Chem 1989 Jul 15;26420:11995-2000.
Show Gene links Show Anatomy links

The cellular pool of Na+ channels in the amphibian cell line A6 is not altered by mineralocorticoids. Analysis using a new photoactive amiloride analog in combination with anti-amiloride antibodies.

Kleyman TR , Cragoe EJ , Kraehenbuhl JP .


???displayArticle.abstract???
An amiloride-sensitive Na+ channel is found in the apical plasma membrane of high resistance, Na+ transporting epithelia. We have developed a method for the identification of this channel based on the use of a new high affinity photoreactive amiloride analog, 2'-methoxy-5'-nitrobenzamil (NMBA), and anti-amiloride antibodies to identify photolabeled polypeptides. NMBA specifically labels the putative Na+ channel in bovine kidney microsomes. A 130-kDa polypeptide is detected on immunoblots with anti-amiloride antibodies. NMBA is a potent inhibitor of Na+ transport in the established amphibian kidney epithelial cell line A6, and specifically labels a 130-kDa polypeptide. We utilized both NMBA photolabeling and [3H]benzamil binding in order to examine the cellular pool of putative channels following hormonal regulation of Na+ transport. This pool is not significantly altered by the mineralocorticoid agonist aldosterone or antagonist spironolactone, despite a 3.8-fold difference in transepithelial Na+ transport.

???displayArticle.pubmedLink??? 2545694
???displayArticle.link??? J Biol Chem
???displayArticle.grants??? [+]

Species referenced: Xenopus laevis